1. Software systems for operation, control, and monitoring of the EBEX instrument
- Author
-
Michael Milligan, Peter Ade, François Aubin, Carlo Baccigalupi, Chaoyun Bao, Julian Borrill, Christopher Cantalupo, Daniel Chapman, Joy Didier, Matt Dobbs, Will Grainger, Shaul Hanany, Seth Hillbrand, Johannes Hubmayr, Peter Hyland, Andrew Jaffe, Bradley Johnson, Theodore Kisner, Jeff Klein, Andrei Korotkov, Sam Leach, Adrian Lee, Lorne Levinson, Michele Limon, Kevin MacDermid, Tomotake Matsumura, Amber Miller, Enzo Pascale, Daniel Polsgrove, Nicolas Ponthieu, Kate Raach, Britt Reichborn-Kjennerud, Ilan Sagiv, Huan Tran, Gregory S. Tucker, Yury Vinokurov, Amit Yadav, Matias Zaldarriaga, Kyle Zilic, Radziwill, Nicole M., and Bridger, Alan
- Subjects
Schedule ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,business.industry ,Payload ,Computer science ,Real-time computing ,Housekeeping (computing) ,FOS: Physical sciences ,01 natural sciences ,Front and back ends ,Software ,0103 physical sciences ,Disk storage ,Software system ,Ground segment ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3~GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight., Comment: 11 pages, to appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010; adjusted metadata for arXiv submission
- Published
- 2010