1. Towards Knowledge-Driven Automatic Service Composition for Wildfire Prediction
- Author
-
Chirine Ghedira Guegan, Michael Mrissa, Khouloud Boukadi, Faiez Gargouri, Hela Taktak, Service Oriented Computing (SOC), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Multimedia, InfoRmation systems and Advanced Computing Laboratory (MIRACL), Faculté des Sciences Economiques et de Gestion de Sfax (FSEG Sfax), Université de Sfax - University of Sfax-Université de Sfax - University of Sfax, and InnoRenew CoE
- Subjects
fire prediction ,Earth observation ,Computer science ,020207 software engineering ,02 engineering and technology ,Service composition ,Data science ,Intervention (law) ,machine learning ,020204 information systems ,0202 electrical engineering, electronic engineering, information engineering ,service composition ,[INFO]Computer Science [cs] ,Weather satellite ,ComputingMilieux_MISCELLANEOUS - Abstract
Wildfire prediction from Earth Observation (EO) data has gained much attention in the past years, through the development of connected sensors and weather satellites. Nowadays, it is possible to extract knowledge from collected EO data and to learn from this knowledge without human intervention to trigger wildfire alerts. However, exploiting knowledge extracted from multiple EO data sources at run-time and predicting wildfire raise multiple challenges. One major challenge is to provide dynamic construction of service composition plans, according to the data obtained from sensors. In this paper, we present a knowledge-driven Machine Learning approach that relies on historical data related to wildfire observations to guide the collection of EO data and to automatically and dynamically compose services for triggering wildfire alerts.
- Published
- 2021
- Full Text
- View/download PDF