1. Optimal production planning and scheduling in breweries
- Author
-
Georgios Georgiadis, Apostolos P. Elekidis, and Michael C. Georgiadis
- Subjects
0106 biological sciences ,Mathematical optimization ,Optimization problem ,Job shop scheduling ,Computer science ,General Chemical Engineering ,Scheduling (production processes) ,Synchronizing ,Time horizon ,04 agricultural and veterinary sciences ,040401 food science ,01 natural sciences ,Biochemistry ,Constructive ,0404 agricultural biotechnology ,Test case ,Production planning ,010608 biotechnology ,Food Science ,Biotechnology - Abstract
This work considers the optimal production planning and scheduling problem in beer production facilities. The underlying optimization problem is characterized by significant complexity, including multiple production stages, several processing units, shared resources, tight design and operating constraints and intermediate and final products. Breweries are mainly differentiated to the rest of the beverage industries in terms of long lead times required for the fermentation/maturation process of beer. Therefore, synchronizing the production stages is an extremely challenging task, while the long time horizon leads to larger and more difficult optimization problems. In this work we present a new MILP model, using a mixed discrete-continuous time representation and the immediate precedence framework in order to minimize total production costs. A number of test cases are used to illustrate the superiority of the proposed model in terms of computational efficiency and solution quality compared with approaches developed in other research contributions. The proposed model provides consistently better solutions and improvements of up to 50% are reported. In order to address large-scale problem instances and satisfy the computation limitations imposed by the industry, a novel MILP-based solution strategy is developed, that consists of a constructive and an improvement step. As a result, near-optimal solutions for extremely large cases consisting of up to 30 fermentation tanks, 5 filling lines and 40 products are generated in less than two hours. Finally, the proposed method is successfully applied to a real-life case study provided by a Greek brewery and near-optimal schedules are generated in relatively short CPU times.
- Published
- 2021
- Full Text
- View/download PDF