1. Learning with Exact Invariances in Polynomial Time
- Author
-
Soleymani, Ashkan, Tahmasebi, Behrooz, Jegelka, Stefanie, and Jaillet, Patrick
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
We study the statistical-computational trade-offs for learning with exact invariances (or symmetries) using kernel regression. Traditional methods, such as data augmentation, group averaging, canonicalization, and frame-averaging, either fail to provide a polynomial-time solution or are not applicable in the kernel setting. However, with oracle access to the geometric properties of the input space, we propose a polynomial-time algorithm that learns a classifier with \emph{exact} invariances. Moreover, our approach achieves the same excess population risk (or generalization error) as the original kernel regression problem. To the best of our knowledge, this is the first polynomial-time algorithm to achieve exact (not approximate) invariances in this context. Our proof leverages tools from differential geometry, spectral theory, and optimization. A key result in our development is a new reformulation of the problem of learning under invariances as optimizing an infinite number of linearly constrained convex quadratic programs, which may be of independent interest.
- Published
- 2025