1. Biased Pareto Optimization for Subset Selection with Dynamic Cost Constraints
- Author
-
Liu, Dan-Xuan and Qian, Chao
- Subjects
Computer Science - Data Structures and Algorithms ,Computer Science - Neural and Evolutionary Computing - Abstract
Subset selection with cost constraints aims to select a subset from a ground set to maximize a monotone objective function without exceeding a given budget, which has various applications such as influence maximization and maximum coverage. In real-world scenarios, the budget, representing available resources, may change over time, which requires that algorithms must adapt quickly to new budgets. However, in this dynamic environment, previous algorithms either lack theoretical guarantees or require a long running time. The state-of-the-art algorithm, POMC, is a Pareto optimization approach designed for static problems, lacking consideration for dynamic problems. In this paper, we propose BPODC, enhancing POMC with biased selection and warm-up strategies tailored for dynamic environments. We focus on the ability of BPODC to leverage existing computational results while adapting to budget changes. We prove that BPODC can maintain the best known $(\alpha_f/2)(1-e^{-\alpha_f})$-approximation guarantee when the budget changes. Experiments on influence maximization and maximum coverage show that BPODC adapts more effectively and rapidly to budget changes, with a running time that is less than that of the static greedy algorithm., Comment: This paper has appeared at PPSN'24
- Published
- 2024