1. Towards an adaptive curation services composition based on machine learning
- Author
-
Khouloud Boukadi, Firas Zouari, Nadia Kabachi, Chirine Ghedira-Guegan, Service Oriented Computing (SOC), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), SID, Equipe de Recherche en Ingénierie des Connaissances (ERIC), Université Lumière - Lyon 2 (UL2)-Université Lumière - Lyon 2 (UL2), Multimedia, InfoRmation systems and Advanced Computing Laboratory (MIRACL), Faculté des Sciences Economiques et de Gestion de Sfax (FSEG Sfax), Université de Sfax - University of Sfax-Université de Sfax - University of Sfax, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Centre de Recherche Magellan, Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Institut d'Administration des Entreprises (IAE) - Lyon, Département Organisation et Modélisation des Systèmes Industriels (OMSI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I
- Subjects
Data curation ,business.industry ,Computer science ,Process (engineering) ,Data management ,Big data ,Unstructured data ,computer.software_genre ,Machine learning ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Data visualization ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Reinforcement learning ,Artificial intelligence ,Web service ,business ,computer ,ComputingMilieux_MISCELLANEOUS - Abstract
Data curation deals with managing the data by applying different tasks such as extraction, enrichment, cleaning to fit the purpose of use. Indeed, nowadays, there is an increasing need to implement such tasks in the big data era to maintain data management. Big data is involved in decision processes to perform analysis, visualization, prediction, etc. Thus, there is a dependency between the generated outcomes and the input data of such a process. Therefore, decision process features (e.g., decision context, user constraints, and requirements) need to be taken into account during the data management process, including the data curation phase. Although the proposed curation approaches in the literature are diverse, most of them are static and do not consider the decision process features. Moreover, most of the proposals are dedicated to curating a specific data source format (e.g., structured/unstructured data source). To overcome these limitations, we propose a new approach ACUSEC (Adaptive CUration SErvice Composition) that ensures adaptive curation services composition by considering different features: the source type, the user constraints and preferences, and the decision context. To do so, we rely on AI and machine learning mechanisms such as reinforcement learning. Following the approach's definition, we conducted experiments that show encouraging results in overall execution time and adaptation to the above features.
- Published
- 2021
- Full Text
- View/download PDF