1. Recurrent autonomous autoencoder for intelligent DDoS attack mitigation within the ISP domain
- Author
-
Ili Ko, Desmond Chambers, and Enda Barrett
- Subjects
Network security ,Computer science ,Denial-of-service attack ,02 engineering and technology ,Random walk ,UDP flood attack ,computer.software_genre ,DDoS mitigation ,Cyber security ,Unsupervised learning ,Internet Control Message Protocol ,Artificial Intelligence ,Machine learning ,0202 electrical engineering, electronic engineering, information engineering ,Cluster analysis ,business.industry ,ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS ,020206 networking & telecommunications ,Deep learning ,Autoencoder ,Scalability ,020201 artificial intelligence & image processing ,Original Article ,Evaluation metrics for unsupervised learning ,Computer Vision and Pattern Recognition ,Data mining ,business ,computer ,Software - Abstract
The continuous advancement of DDoS attack technology and an increasing number of IoT devices connected on 5G networks escalate the level of difficulty for DDoS mitigation. A growing number of researchers have started to utilise Deep Learning algorithms to improve the performance of DDoS mitigation systems. Real DDoS attack data has no labels, and hence, we present an intelligent attack mitigation (IAM) system, which takes an ensemble approach by employing Recurrent Autonomous Autoencoders (RAA) as basic learners with a majority voting scheme. The RAA is a target-driven, distributionenabled, and imbalanced clustering algorithm, which is designed to work with the ISP’s blackholing mechanism for DDoS flood attack mitigation. It can dynamically select features, decide a reference target (RT), and determine an optimal threshold to classify network traffic. A novel Comparison-Max Random Walk algorithm is used to determine the RT, which is used as an instrument to direct the model to classify the data so that the predicted positives are close or equal to the RT. We also propose Estimated Evaluation Metrics (EEM) to evaluate the performance of unsupervised models. The IAM system is tested with UDP flood, TCP flood, ICMP flood, multi-vector and a real UDP flood attack data. Additionally, to check the scalability of the IAM system, we tested it on every subdivided data set for distributed computing. The average Recall on all data sets was above 98%.
- Published
- 2021