1. Topology gradient optimization in 2D and 3D for the design of microwave components
- Author
-
Jérôme Puech, Serge Verdeyme, Hassan K. Khalil, L. Lapierre, Michel Aubourg, Dominique Baillargeat, Stephane Bila, Atousa Assadi-Haghi, MINACOM, XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Robotique mobile pour l'exploration de l'environnement (EXPLORE), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Waveguide (electromagnetism) ,021103 operations research ,Materials science ,0211 other engineering and technologies ,020206 networking & telecommunications ,Topology (electrical circuits) ,02 engineering and technology ,Condensed Matter Physics ,Topology ,Atomic and Molecular Physics, and Optics ,Finite element method ,Electronic, Optical and Magnetic Materials ,Planar ,Component (UML) ,0202 electrical engineering, electronic engineering, information engineering ,Shape optimization ,Electrical and Electronic Engineering ,Gradient method ,Microwave ,ComputingMilieux_MISCELLANEOUS - Abstract
A numerical model defined by a finite element method coupled with a topology gradient method is used for optimizing the shape of microwave components with respect to electrical specifications. The approach, which consists in minimizing a cost function with respect to the physical property of individual topological elements, which define the shape of the component, is first described. Regarding the given electrical specifications, the technique is applied for optimizing, respectively, in 2D, the distribution of metal upon the surface of a planar component and, in 3D, the distribution of dielectric material within a waveguide component. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 2739–2743, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23751
- Published
- 2008