183 results on '"Johnston, D."'
Search Results
2. Europium $c$-axis ferromagnetism in Eu(Co$_{1-x}$Ni$_{x}$)$_{2-y}$As$_{2}$: A single-crystal neutron diffraction study
- Author
-
Han, Tianxiong, Pakhira, Santanu, Sangeetha, N. S., Riberolles, S. X. M., Heitmann, T. W., Wu, Yan, Johnston, D. C., McQueeney, R. J., and Ueland, B. G.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
We report neutron diffraction results for the body-centered-tetragonal series Eu(Co$_{1-x}$Ni$_x$)$_{2-y}$As$_2$, $x=0.10$, $0.20$, $0.42$, and $0.82$, $y\leq0.10$, that detail changes to the magnetic ordering with nominal hole doping. We report the antiferromagnetic (AFM) propagation vectors, magnetic transition temperatures, and the ordered magnetic moments. We find a nonmonotonic change of the AFM propagation vector with $x$, with a minimum occurring at the tetragonal to collapsed-tetragonal phase crossover. For $x=0.10$ and $0.82$ we find $c$-axis helix ordering of the Eu magnetic moments (spins) similar to $x=0$ and $1$, with the spins oriented within the $ab$-plane. For $x=0.20$ and $0.42$ we find higher-temperature $c$-axis FM order and lower-temperature $c$-axis cone order. Using the extinction conditions for the space group, we discovered that the Eu spins are ordered in the higher-temperature $c$-axis FM phase for intermediate values of $x$, contrary to a previous report suggesting only Co/Ni spin ordering. Although we cannot directly confirm that the Co/Ni spins are also ordered, we suggest that $c$-axis itinerant-FM ordering of the Co/Ni spins could provide a molecular field that drives FM ordering of the Eu spins, which in turn provides the anisotropy for the lower-temperature $c$-axis cone order.
- Published
- 2024
- Full Text
- View/download PDF
3. Gapless spinons and a field-induced soliton gap in the hyper-honeycomb Cu oxalate framework compound [(C$_{2}$H$_{5}$)$_{3}$NH]$_{2}$Cu$_{2}$(C$_{2}$O$_{4}$)$_{3}$
- Author
-
Dissanayake, C., Jacko, A. C., Kumarasinghe, K., Munir, R., Siddiquee, H., Newsome, W. J., Uribe-Romo, F. J., Choi, E. S., Yadav, S., Hu, X. -Z., Takano, Y., Pakhira, S., Johnston, D. C., Ding, Q. -P., Furukawa, Y., Powell, B. J., and Nakajima, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We report a detailed study of the specific heat and magnetic susceptibility of single crystals of a spin liquid candidate: the hyper-honeycomb Cu oxalate framework compound [(C$_2$H$_5$)$_3$NH]$_2$Cu$_2$(C$_2$O$_4$)$_3$. The specific heat shows no anomaly associated with a magnetic transition at low temperatures down to $T\sim$ 180 mK in zero magnetic field. We observe a large linear-in-$T$ contribution to the specific heat $\gamma T$, $\gamma = 98(1)$ mK/mol K$^{2}$, at low temperatures, indicative of the presence of fermionic excitations despite the Mott insulating state. The low-$T$ specific heat is strongly suppressed by applied magnetic fields $H$, which induce an energy gap, $\Delta (H)$, in the spin-excitation spectrum. We use the four-component relativistic density-functional theory (DFT) to calculate the magnetic interactions, including the Dzyaloshinskii-Moriya antisymmetric exchange, which causes an effective staggered field acting on one copper sublattice. The magnitude and field dependence of the field-induced gap, $\Delta (H) \propto H^{2/3}$, are accurately predicted by the soliton mass calculated from the sine-Gordon model of weakly coupled antiferromagnetic Heisenberg chains with all parameters determined by our DFT calculations. Thus our experiment and calculations are entirely consistent with a model of [(C$_2$H$_5$)$_3$NH]$_2$Cu$_2$(C$_2$O$_4$)$_3$ in which anisotropic magnetic exchange interactions due to Jahn-Teller distortion cause one copper sublattice to dimerize, leaving a second sublattice of weakly coupled antiferromagnetic chains. We also show that this model quantitatively accounts for the measured temperature-dependent magnetic susceptibility. Thus [(C$_2$H$_5$)$_3$NH]$_2$Cu$_2$(C$_2$O$_4$)$_3$ is a canonical example of a one-dimensional spin-1/2 Heisenberg antiferromagnet and not a resonating-valence-bond quantum spin liquid, as previously proposed., Comment: 8 pages, 6 figures
- Published
- 2023
- Full Text
- View/download PDF
4. Anisotropic magnetism and electronic structure of trigonal EuAl$_2$Ge$_2$ single crystals
- Author
-
Pakhira, Santanu, Kundu, Asish K., Islam, Farhan, Tanatar, M. A., Roy, Tufan, Heitmann, Thomas, Yilmaz, T., Vescovo, E., Tsujikawa, Masahito, Shirai, Masafumi, Prozorov, R., Vaknin, David, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The magnetic and electronic properties of the layered Zintl-phase compound EuAl$_2$Ge$_2$ crystallizing in the trigonal CaAl$_2$Si$_2$-type structure are reported. Our neutron-diffraction measurements show that EuAl$_2$Ge$_2$ undergoes A-type antiferromagnetic (AFM) ordering below $T_{\rm N} = 27.5(5)$~K, with the Eu moments (Eu$^{2+}$, $S = 7/2$) aligned ferromagnetically in the $ab$ plane. The $H = 0$ magnetic structure consists of trigonal AFM domains associated with $ab$-plane magnetic anisotropy and a field-induced reorientation of the Eu spins in the domains is evident at $T = 2$~K below the critical field $H_{c1} = 2.5(1)$ kOe. Electrical resistivity and ARPES measurements show that EuAl$_2$Ge$_2$ is metallic both above and below $T_{\rm N}$. In the AFM phase, we directly observe folded bands in ARPES due to the doubling of the magnetic unit cell along the $c$ axis with an enhancement of quasiparticle weight due to the complex change in the coupling between the magnetic moments and itinerant electrons on cooling below $T_{\rm N}$. The observed electronic structure is well reproduced by first-principle calculations, which also predict the presence of nontrivial electronic states near the Fermi level in the AFM phase with $Z_2$ topological numbers 1;(000)., Comment: 16 pages, 13 captioned figures, 53 references Updated several affiliations
- Published
- 2023
- Full Text
- View/download PDF
5. Low-field magnetic anomalies in single crystals of the A-type square-lattice antiferromagnet EuGa$_4$
- Author
-
Pakhira, Santanu and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The body-centered-tetragonal antiferromagnet EuGa$_4$ was recently identified as a Weyl nodal-line semimetal that exhibits the topological Hall effect below its reported antiferromagnetic (AFM) ordering temperature $T_{\rm N}= 15$-16.5 K which we find to be $T_{\rm N} = 16.4(2)$ K. The Eu$^{+2}$ ions are located at the corners and body center of the unit cell. EuGa$_4$ exhibits A-type AFM order below $T_{\rm N}$, where the Eu$^{2+}$ spin-7/2 moments are ferromagnetically aligned in the $ab$ plane with the Eu moments in adjacent Eu planes along the $c$ axis aligned antiferromagnetically. Low-field magnetization versus field $M(H_{ab})$ data at $T=2$ K with the field aligned in the $ab$ plane are reported that exhibit anomalous positive curvature up to a critical field $H_{c1}$ at which a second-order transition occurs with $H_{c1}\approx 0.85$ kOe for ${\bf H}\parallel [1,1,0]$ and $\approx 4.8$ kOe for ${\bf H}\parallel [1,0,0]$. For larger fields, a linear behavior $M_{ab} = \chi(T_{\rm N})H_{ab}$ is followed until the previously-reported critical field $H^{\rm c}_{ab} = 71$ kOe is reached at which all moments become aligned with the applied field. A theory is formulated for $T=0$ K that fits the observed $M(H_{ab})$ behavior at $T=2$ K well, where domains of A-type AFM order with fourfold rotational symmetry occur in the AFM state in zero field. The moments in the four domains reorient to become almost perpendicular to ${\bf H}_{ab}$ at $H_{c1}$, followed by increasing canting of all moments toward the field with increasing field up to $H^{\rm c}_{ab}$. A first-order transition in $M(H_{ab})$ at $H_{ab}=H_{\rm c1}$ is predicted by the theory for $T=0$ K when ${\bf H}_{ab}$ is at a small angle from the [1,0,0] or [1,1,0] directions., Comment: 11 pages, 12 figures. Typographical errors corrected, additional analysis given
- Published
- 2022
- Full Text
- View/download PDF
6. Electronic and magnetic properties of the topological semimetal SmMg$_2$Bi$_2$
- Author
-
Kundu, Asish K., Pakhira, Santanu, Roy, Tufan, Yilmaz, T., Tsujikawa, Masahito, Shirai, Masafumi, Vescovo, E., Johnston, D. C., Pasupathy, Abhay N., and Valla, Tonica
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Dirac semimetals show nontrivial physical properties and can host exotic quantum states like Weyl semimetals and topological insulators under suitable external conditions. Here, by combining angle-resolved photoemission spectroscopy measurements (ARPES) and first-principle calculations, we demonstrate that Zintl-phase compound SmMg$_2$Bi$_2$ belongs to the close proximity to a topological Dirac semimetallic state. ARPES results show a Dirac-like band crossing at the zone-center near the Fermi level ($E_\mathrm {F}$) which is further confirmed by first-principle calculations. Theoretical studies also reveal that SmMg$_2$Bi$_2$ belongs to a $Z_2$ topological class and hosts spin-polarized states around the $E_\mathrm {F}$. Zintl's theory predicts that the valence state of Sm in this material should be Sm$^{2+}$, however we detect many Sm-4$f$ multiplet states (flat-bands) whose energy positions suggest the presence of both Sm$^{2+}$ and Sm$^{3+}$. It is also evident that these flat-bands and other dispersive states are strongly hybridized when they cross each other. Due to the presence of Sm$^{3+}$ ions, the temperature dependence of magnetic susceptibility $\chi(T)$ shows Curie-Weiss-like contribution in the low temperature region, in addition to the Van Vleck-like behaviour expected for the Sm$^{2+}$ ions. The present study will help in better understanding of the electronic structure, magnetism and transport properties of related materials., Comment: 11 pages, 7 figures
- Published
- 2022
- Full Text
- View/download PDF
7. Magnetic-field-induced ab-plane rotation of the Eu magnetic moments in trigonal EuMg2Bi2 and EuMg2Sb2 single crystals below their Neel temperatures
- Author
-
Pakhira, Santanu, Lee, Yongbin, Ke, Liqin, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The thermodynamic and electronic-transport properties of trigonal EuMg2Bi2 in ab-plane magnetic fields Hx and the A-type antiferromagnetic structure have recently been reported. At a temperature of 1.8 K < TN, the Eu magnetic moments with spin S = 7/2 remain locked in the ab plane up to and above the ab-plane critical field Hxc = 27.5 kOe at which the Eu moments become parallel to Hx. Here additional measurements at low fields are reported that reveal a new spin-reorientation transition at a field Hc1 = 465 Oe where the Eu moments remain in the ab plane but become perpendicular to Hx. At higher fields, the moments cant towards the field resulting in M proportional to Hx up to Hxc. Similar results are reported from measurements of the magnetic properties of EuMg2Sb2 single crystals, where Hc1 = 220 Oe is found. Theory is formulated that models the low-field magnetic behavior of both materials, and the associated anisotropies are calculated. The ab-plane trigonal anisotropy in EuMg2Sb2 is found to be significantly smaller than in EuMg2Bi2., Comment: 11 pages, 10 captioned figures, 3 tables, 25 references
- Published
- 2022
- Full Text
- View/download PDF
8. Topological electronic structure of YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$
- Author
-
Kundu, Asish K., Roy, Tufan, Pakhira, Santanu, Wu, Ze-Bin, Tsujikawa, Masahito, Shirai, Masafumi, Johnston, D. C., Pasupathy, Abhay N., and Valla, Tonica
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Other Condensed Matter ,Condensed Matter - Strongly Correlated Electrons - Abstract
Zintl compounds have been extensively studied for their outstanding thermoelectric properties, but their electronic structure remains largely unexplored. Here, we present a detailed investigation of the electronic structure of the isostructural thermopower materials YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$ using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). The ARPES results show a significantly smaller Fermi surface and Fermi velocity in CaMg$_2$Bi$_2$ than in YbMg$_2$Bi$_2$. Our ARPES results also reveal that in the case of YbMg$_2$Bi$_2$, Yb-4$f$ states reside well below the Fermi level and likely have a negligible impact on transport properties. To properly model the position of 4$f$-states, as well as the overall electronic structure, a Hubbard $U$ at the Yb sites and spin-orbit coupling (SOC) have to be included in the DFT calculations. Interestingly, the theoretical results reveal that both materials belong to a $Z_2$ topological class and host robust topological surface states around $E_\mathrm {F}$. Due to the intrinsic hole doping, the topological states reside above the Fermi level, inaccessible by ARPES. Our results also suggest that in addition to SOC, vacancies and the resulting hole doping play an important role in the transport properties of these materials., Comment: 11 pages, 7 figures
- Published
- 2022
- Full Text
- View/download PDF
9. A-type antiferromagnetic order in semiconducting EuMg$_2$Sb$_2$ single crystals
- Author
-
Pakhira, Santanu, Islam, Farhan, O'Leary, Evan, Tanatar, M. A., Heitmann, Thomas, Prozorov, R., Kaminski, Adam, Vaknin, David, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Eu-based Zintl-phase materials EuA$_2$Pn$_2$ (A = Mg, In, Cd, Zn; Pn = Bi, Sb, As, P) have generated significant recent interest owing to the complex interplay of magnetism and band topology. Here, we investigated the electronic, magnetic, and electronic properties of the layered Zintl-phase single crystals of EuMg$_2$Sb$_2$ with the trigonal CaAl$_2$Si$_2$ crystal structure (space group $P\bar{3}m1$). Electrical resistivity measurements complemented with angle-resolved photoemission spectroscopy (ARPES) studies find an activated behavior with the intrinsic conductivity at high temperatures indicating a semiconducting electronic ground state with a narrow energy gap of 370 meV. Magnetic susceptibility and zero-field heat-capacity measurements indicate that the compound undergoes antiferromagnetic (AFM) ordering at the Neel temperature $T_{\rm N}$ = 8.0(2) K. Zero-field neutron-diffraction measurements reveal that the AFM ordering is A-type where the Eu ordered moments (Eu$^{2+}$, S= 7/2) arranged in ab-plane layers are aligned ferromagnetically in the ab plane with the Eu moments in adjacent layers aligned antiferromagnetically. We also find that Eu-moment reorientation in the trigonal AFM domains within the ab planes occurs below $T_{\rm N}$ at low fields < 0.05 T due to very small in-plane anisotropy. Although isostructural semimetallic EuMg$_2$Bi$_2$ is reported to host Dirac surface states, the observation of narrow-gap semiconducting behavior in EuMg$_2$Sb$_2$ implies a strong role of spin-orbit coupling in tuning the electronic states of these materials., Comment: 15 pages, 15 captioned figures, 33 references
- Published
- 2022
- Full Text
- View/download PDF
10. Itinerant G-type antiferromagnet SrCr2As2 studied by magnetization, heat capacity, electrical resistivity, and NMR measurements
- Author
-
Ding, Q. -P., Pakhira, Santanu, Sangeetha, N. S., Krenkel, E. H., Timmons, E. I., Tanatar, M. A., Prozorov, R., Johnston, D. C., and Furukawa, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The physical properties of itinerant antiferromagnetic (AFM) SrCr$_2$As$_2$ with body-centered tetragonal ThCr$_2$Si$_2$ structure were investigated in single crystalline and polycrystalline forms by electrical resistivity $\rho$, heat capacity $C_{\rm p}$, magnetic susceptibility $\chi$ versus temperature~$T$ and magnetization $M$ versus applied magnetic field $H$ isotherm measurements as well as $^{75}$As and $^{53}$Cr nuclear magnetic resonance (NMR) measurements in the wide temperature range $T$ = 1.6--900 K. From the $\chi(T)$ and $^{75}$As NMR measurements, the G-type AFM state below $T_{\rm N}$ = 615(15) K has been determined, consistent with the previous neutron-diffraction measurements. Direct evidence of magnetic ordering of the Cr spins was shown by the observation of the $^{53}$Cr NMR spectrum under $H$ = 0. From the $\chi(T)$ measurements on single-crystal SrCr$_2$As$_2$ under the two different magnetic field directions $H||ab$ and $H||c$ in the AFM state, the Cr ordered moments are shown to align along the $c$ axis in the G-type AFM state. The metallic state is directly evidenced by the $\rho$, $C_{\rm p}$, and NMR measurements, and the density of states at the Fermi energy ${\cal D}(E_{\rm F})$ in the AFM state is estimated to be 7.53 states/eV f.u. for both spin directions which is almost twice the bare ${\cal D}(E_{\rm F})$ estimated from first-principles calculations, suggesting an enhancement of the conduction-carrier mass by a factor of two in the AFM state. The ${\cal D}(E_{\rm F})$ is found to be nearly constant below at least 100 K and is independent of $H$. The $\rho(T)$ is found to show $T$-linear behavior above $T_{\rm N}$ and exhibits positive curvature below $T_{\rm N}$ where significant loss of spin-disorder scattering upon magnetic ordering is observed., Comment: 14 pages, 12 figures, accepted for publication in Phys. Rev. B
- Published
- 2022
- Full Text
- View/download PDF
11. Slow spin dynamics in the hyper-honeycomb Lattice [(C2H5)3NH]2Cu2(C2O4)3 revealed by 1H NMR studies
- Author
-
Ding, Q. -P., Dissanayake, C., Pakhira, Santanu, Newsome, W. J., Uribe-Romo, F., Johnston, D. C., Nakajima, Y., and Furukawa, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We report the results of magnetic susceptibility $\chi$ and $^1$H nuclear magnetic resonance (NMR) measurements on a three-dimensional hyper-honeycomb lattice compound [(C$_2$H$_5$)$_3$NH]$_2$Cu$_2$(C$_2$O$_4$)$_3$ (CCCO). The average value of the antiferromagnetic (AFM) exchange coupling between the Cu$^{2+}$ ($S$ = 1/2) spins was determined to be $J$~$\sim$~50 K from the $\chi$ measurements. No long-range magnetic ordering has been observed down to $T$ = 50 mK, although NMR lines become slightly broader at low temperatures below 1 K. The broadening of the NMR spectrum observed below 1 K reveals that the Cu spin moments remain at this temperature, suggesting a non-spin-singlet ground state. The temperature and magnetic field dependence of 1/$T_1$ at temperatures above 20 K is well explained by paramagnetic thermal spin fluctuations where the fluctuation frequency of Cu$^{2+}$ spins is higher than the NMR frequency of the order of MHz. However, a clear signature of the slowing down of the Cu$^{2+}$ spin fluctuations was observed at low temperatures where 1/$T_1$ shows a thermally-activated behavior. The magnetic field dependence of the magnitude of the spin excitation gap suggests that the magnetic behaviors of CCCO are characterized as an AFM chain at low temperatures., Comment: 5 pages, 4 figures, accepted for publication as a Letter in Phys. Rev. B
- Published
- 2022
- Full Text
- View/download PDF
12. KCo$_2$As$_2$: A New Portal for the Physics of High-Purity Metals
- Author
-
Pandey, Abhishek, Liu, Y., Samal, Saroj L., Kushnirenko, Yevhen, Kaminski, A., Singh, D. J., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
High-quality single crystals of KCo$_2$As$_2$ with the body-centered tetragonal ThCr$_2$Si$_2$ structure were grown using KAs self flux. Structural, magnetic, thermal, and electrical transport were investigated. No clear evidence for any phase transitions was found in the temperature range 2 to 300 K. The in-plane electrical resistivity $\rho$ versus temperature $T$ is highly unusual, showing a $T^4$ behavior below 30 K and an anomalous positive curvature up to 300 K which is different from the linear behavior expected from the Bloch-Gr\"uneisen theory for electron scattering by acoustic phonons. This positive curvature has been previously observed in the in-plane resistivity of high-conductivity layered delafossites such as PdCoO$_2$ and PtCoO$_2$. The in-plane $\rho(T\to0) = 0.36~\mu\Omega$ cm of KCo$_2$As$_2$ is exceptionally small for this class of compounds. The material also exhibits a nearly linear magnetoresistance at low $T$ which attains a value of about 40% at $T=2$K and magnetic field $H= 80$ kOe. The magnetic susceptibility $\chi$ of KCo$_2$As$_2$ is isotropic and about an order of magnitude smaller than the values for the related compounds SrCo$_2$As$_2$ and BaCo$_2$As$_2$. The $\chi$ increases above 100 K which is found from our first-principles calculations to arise from a sharp peak in the electronic density of states just above the Fermi energy $E_{\rm F}$. Heat capacity $C_{\rm p}(T)$ data at low $T$ yield an electronic density of states $N(E_{\rm F})$ that is about 36% larger than predicted by the first-principles theory. The $C_{\rm p}(T)$ data near room temperature suggest the presence of excited optic vibration modes which may also be the source of the positive curvature in $\rho(T)$. Our results show that KCo$_2$As$_2$ provides a new avenue for investigating the physics of high-purity metals., Comment: 13 pages, 14 figures
- Published
- 2022
13. Incommensurate and commensurate antiferromagnetic states in CaMn2As2 and SrMn2As2 revealed by 75As NMR
- Author
-
Ding, Q. -P., Sangeetha, N. S., Pandey, Abhishek, Johnston, D. C., and Furukawa, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We carried out $^{75}$As nuclear magnetic resonance (NMR) measurements on the trigonal CaMn$_2$As$_2$ and SrMn$_2$As$_2$ insulators exhibiting antiferromagnetic (AFM) ordered states below N\'eel temperatures $T_{\rm N}$ = 62 K and 120 K, respectively. In the paramagnetic state above $T_{\rm N}$, typical quadrupolar-split $^{75}$As-NMR spectra were observed for both systems. The $^{75}$As quadrupolar frequency $\nu_{\rm Q}$ for CaMn$_2$As$_2$ decreases with decreasing temperature, while $\nu_{\rm Q}$ for SrMn$_2$As$_2$ increases, showing an opposite temperature dependence.In the AFM state, the relatively sharp and distinct $^{75}$As NMR lines were observed in SrMn$_2$As$_2$ and the NMR spectra were shifted to lower fields for both magnetic fields $H$ $||$ $c$ axis and $H$ $||$ $ab$ plane, suggesting that the internal fields $B_{\rm int}$ at the As site produced by the Mn ordered moments are nearly perpendicular to the external magnetic field direction. No obvious distribution of $B_{\rm int}$ was observed in SrMn$_2$As$_2$, which clearly indicates a commensurate AFM state. In sharp contrast to SrMn$_2$As$_2$, broad and complex NMR spectra were observed in CaMn$_2$As$_2$ in the AFM state, which clearly shows a distribution of $B_{\rm int}$ at the As site, indicating an incommensurate state. From the analysis of the characteristic shape of the observed spectra, the AFM state of CaMn$_2$As$_2$ was determined to be a two-dimensional incommensurate state where Mn ordered moments are aligned in the $ab$ plane. A possible origin for the different AFM states in the systems was discussed. Both CaMn$_2$As$_2$ and SrMn$_2$As$_2$ show very large anisotropy in the nuclear spin-lattice relaxation rate 1/$T_1$ in the paramagnetic state. 1/$T_1$ for $H$ $||$ $ab$ is much larger than that for $H$ $|| $c$, indicating strong anisotropic AFM spin fluctuations in both compounds., Comment: 10 pages, 11 figures, accepted for publication in Phys. Rev. B
- Published
- 2021
- Full Text
- View/download PDF
14. Electronic structure of $A$Co$_2$As$_2$ ($A=$ Ca, Sr, Ba, Eu) studied using angle-resolved photoemission spectroscopy and theoretical calculations
- Author
-
Dhaka, R. S., Lee, Y., Anand, V. K., Pandey, Abhishek, Johnston, D. C., Harmon, B. N., and Kaminski, Adam
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Strongly Correlated Electrons - Abstract
We present a comprehensive study of the low-energy band structure and Fermi surface (FS) topology of $A$Co$_2$As$_2$ ($A=$ Ca, Sr, Ba, Eu) using high-resolution angle-resolved photoemission spectroscopy. The experimental FS topology and band dispersion data are compared with theoretical full-potential linearized augmented-plane-wave (FP-LAPW) calculations, which yielded reasonably good agreement. We demonstrate that the FS maps of $A$Co$_2$As$_2$ are significantly different from those of the parent compounds of Fe-based high-temperature superconductors. Further, the FSs of CaCo$_2$As$_2$ do not show significant changes across its antiferromagnetic transition temperature. The band dispersions extracted in different momentum $(k_{\it x}, k_{\it y})$ directions show a small electron pocket at the center and a large electron pocket at the corner of the Brillouin zone (BZ). The absence of the hole FS in these compounds does not allow nesting between pockets at the Fermi energy ({\it E}$_{\rm F}$), which is in contrast to $A$Fe$_2$As$_2$-type parent compounds of the iron-based superconductors. Interestingly, we find that the hole bands are moved 300--400~meV below $E_{\rm F}$ depending on the $A$ element. Moreover, the existence of nearly flat bands in the vicinity of $E_{\rm F}$ are consistent with the large density of states at $E_{\rm F}$. These results are important to understand the physical properties as well as the possibility of the emergence of superconductivity in related materials., Comment: submitted
- Published
- 2021
15. Suppression of antiferromagnetic order and strong ferromagnetic spin fluctuations in Ni-doped CaCo2As2 single crystals
- Author
-
Pakhira, Santanu, Lee, Y., Ke, Liqin, Smetana, V., Mudring, A. -V., Heitmann, Thomas, Vaknin, David, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
CaCo2As2 is a unique itinerant system having strong magnetic frustration. Here we report the effect of electron doping on the physical properties resulting from Ni substitutions for Co. The A-type antiferromagnetic transition temperature TN = 52 K for x = 0 decreases to 22 K with only 3 percent Ni substitution and is completely suppressed for x > 0.11. For 0.11 < x < 0.52 strong ferromagnetic (FM) fluctuations develop as revealed by magnetic susceptibility chi(T) measurements. Heat-capacity Cp(T) measurements reveal the presence of FM quantum spin fluctuations for 0.11 < x < 0.52. Our density-functional theory (DFT) calculations confirm that FM fluctuations are enhanced by Ni substitutions for Co. The Sommerfeld electronic heat-capacity coefficient is enhanced for x = 0, 0.21, and 0.42 by about a factor of two compared to DFT calculations of the bare density of states at the Fermi energy. The crystals with x > 0.52 do not exhibit FM spin fluctuations or magnetic order, which was found from the DFT calculations to arise from a Stoner transition. Neutron-diffraction studies of crystals with x = 0.11 and 0.16 found no evidence of A-type ordering as observed in CaCo2As2 or of other common magnetic structures., Comment: 19 pages, 18 captioned figures, 7 tables, 79 references
- Published
- 2021
- Full Text
- View/download PDF
16. A-type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin-7/2 triangular-lattice compound EuSn2As2
- Author
-
Pakhira, Santanu, Tanatar, M. A., Heitmann, Thomas, Vaknin, David, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The trigonal compound EuSn2As2 was recently discovered to host Dirac surface states within the bulk band gap and orders antiferromagnetically below the Neel temperature TN = 24 K. Here the magnetic ground state of single-crystal EuSn2As2 and the evolution of its properties versus temperature T and applied magnetic field H are reported. Included are zero-field single-crystal neutron-diffraction measurements versus T, magnetization M(H,T), magnetic susceptibility chi(H,T) = M(T)/H, heat capacity Cp(H,T), and electrical resistivity rho(H,T) measurements. The neutron-diffraction and chi(T) measurements both indicate a collinear A-type antiferromagnetic (AFM) structure below TN =23.5(2) K, where the Eu{2+} spins S = 7/2 in a triangular ab-plane layer (hexagonal unit cell) are aligned ferromagnetically in the ab plane whereas the spins in adjacent Eu planes along the c axis are aligned antiferromagnetically. The chi(H{ab},T) and chi(H{c},T) data together indicate a smooth crossover between the collinear AFM alignment and an unknown magnetic structure at H ~ 0.15 T. Dynamic spin fluctuations up to 60 K are evident in the chi(T), Cp(T) and rho(H,T) measurements, a temperature that is more than twice TN. The rho(H,T) of the compound does not reflect a contribution of the topological state, but rather is consistent with a low-carrier-density metal with strong magnetic scattering. The magnetic phase diagrams for both H||c and H||ab in the H-T plane are constructed from the TN(H), chi(H,T), Cp(H,T), and rho(H,T) data., Comment: 15 pages, 19 captioned figures, 2 tables, 66 references
- Published
- 2021
- Full Text
- View/download PDF
17. First-order transitions at the Neel temperatures of trigonal SrMn2P2 and CaMn2P2 single crystals containing corrugated-honeycomb Mn sublattices
- Author
-
Sangeetha, N. S., Pakhira, Santanu, Ding, Q. -P., Lee, H. -C., Smetana, V., Mudring, A. -V., Furukawa, Y., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Single crystals of SrMn2P2 and CaMn2P2 were grown using Sn flux and characterized by single-crystal x-ray diffraction, electrical resistivity rho, heat capacity Cp, and magnetic susceptibility chi = M/H measurements versus temperature T and magnetization M versus applied magnetic field H isotherm measurements. The x-ray diffraction results show that both compounds adopt the trigonal CaAl2Si2-type structure. The rho(T) measurements demonstrate insulating ground states for both compounds. The chi(T) and Cp(T) data reveal a weak first-order antiferromagnetic (AFM) transition at the Neel temperature TN = 53(1) K for SrMn2P2 and a strong first-order AFM transition at TN = 69.8(3) K for CaMn2P2. Both compounds show an isotropic and nearly T-independent chi(T < TN). {31}P NMR measurements confirm the strong first-order transition in CaMn2P2 but show critical slowing down near TN for SrMn2P2 thus evidencing second-order character. The NMR measurements also indicate that the AFM structure of CaMn2P2 is commensurate with the lattice whereas that of SrMn2P2 is incommensurate. These first-order AFM transitions are unique among the class of trigonal (Ca, Sr, Ba)Mn2(P, As, Sb, Bi)2 compounds which otherwise exhibit second-order AFM transitions. This result presents a challenge to understand the systematics of magnetic ordering in this class of materials in which magnetically-frustrated antiferromagnetism is quasi-two-dimensional., Comment: 16 pages, 18 captioned figures, 62 references
- Published
- 2021
- Full Text
- View/download PDF
18. Carrier Tuning of Stoner Ferromagnetism in ThCr$_{\mathbf{2}}$Si$_{\mathbf{2}}$-Structure Cobalt Arsenides
- Author
-
Ueland, B. G., Pakhira, Santanu, Li, Bing, Sapkota, A., Sangeetha, N. S., Perring, T. G., Lee, Y., Ke, Liqin, Johnston, D. C., and McQueeney, R. J.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
CaCo$_{2-y}$As$_2$ is an unusual itinerant magnet with signatures of extreme magnetic frustration. The conditions for establishing magnetic order in such itinerant frustrated magnets, either by reducing frustration or increasing electronic correlations, is an open question. Here we use results from inelastic neutron scattering and magnetic susceptibility measurements and density functional theory calculations to show that hole doping in Ca(Co$_{1-x}$Fe$_{x}$)$_{2-y}$As$_{2}$ suppresses magnetic order by quenching the magnetic moment while maintaining the same level of magnetic frustration. The suppression is due to tuning the Fermi energy away from a peak in the electronic density of states originating from a flat conduction band. This results in the complete elimination of the magnetic moment by $x\approx0.25$, providing a clear example of a Stoner-type transition., Comment: The image plots may render better in acrobat (or another comparable pdf viewer) than in your browser
- Published
- 2021
- Full Text
- View/download PDF
19. Magnetic detwinning and biquadratic magnetic interaction in EuFe2As2 revealed by 153Eu NMR
- Author
-
Ding, Q. -P., Sangeetha, N. S., Meier, W. R., Xu, M., Bud'ko, S. L., Canfield, P. C., Johnston, D. C., and Furukawa, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
In the nematic state of iron-based superconductors, twin formation often obscures the intrinsic, anisotropic, in-plane physical properties.Relatively high in-plane external magnetic fields $H_{\rm ext}$ greater than the typical lab-scale magnetic fields 10--15 T are usually required to completely detwin a sample. However, recently a very small in-plane $H_{\rm ext} \sim$ 0.1 T was found to be sufficient for detwinning the nematic domains in EuFe$_2$As$_2$. To explain this behavior, a microscopic theory based on biquadratic magnetic interactions between the Eu and Fe spins has been proposed. Here, using $^{153}$Eu nuclear magnetic resonance (NMR) measurements below the Eu$^{2+}$ ordering temperature, we show experimental evidence of the detwinning under small in-plane $H_{\rm ext}$. Our NMR study also reveals the evolution of the angles between the Eu and Fe spins during the detwinning process, which provides the first experimental evidence for the existence of biquadratic coupling in the system., Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B rapid communication
- Published
- 2020
- Full Text
- View/download PDF
20. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2
- Author
-
Riberolles, S. X. M., Trevisan, T. V., Kuthanazhi, B., Heitmann, T. W., Ye, F., Johnston, D. C., Bud'ko, S. L., Ryan, D. H., Canfield, P. C., Kreyssig, A., Vishwanath, A., McQueeney, R. J., Wang, L. -L., Orth, P. P., and Ueland, B. G.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn$_{2}$As$_{2}$ is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn$_{2}$As$_{2}$ actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180$^{\circ}$ rotation and time-reversal symmetries: $C_{2}\times\mathcal{T}=2^{\prime}$. Surfaces protected by $2^{\prime}$ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of $H\approx1$ to $2$ T can tune between gapless and gapped surface states., Comment: 49 pages, 26 figures
- Published
- 2020
- Full Text
- View/download PDF
21. Emergence of ferromagnetism due to Ir substitutions in single-crystalline Ba[Co(1 x)Ir(x)]2As2
- Author
-
Pakhira, Santanu, Sangeetha, N. S., Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
The ternary-arsenide compound BaCo2As2 was previously proposed to be in proximity to a quantum-critical point where long-range ferromagnetic (FM) order is suppressed by quantum fluctuations. Here we report the effect of Ir substitution for Co on the magnetic and thermal properties of Ba[Co(1-x)Ir(x)]2As2 (0 <= x <= 0.25) single crystals. These compositions all crystallize in an uncollapsed body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. Magnetic susceptibility measurements reveal clear signatures of FM ordering for x >= 0.11 with a nearly composition-independent Curie temperature TC = 13 K. The small variation of TC with x, the occurrence of hysteresis in magnetization versus field isotherms at low field and temperature, very small spontaneous and remanent magnetizations < 0.01 muB/f.u., and thermomagnetic irreversibility in the low-temperature region together indicate that the FM response arises from short-range FM ordering of spin clusters as previously inferred to occur in Ca[Co{1-x}Ir{x}]{2-y}As2. Heat-capacity Cp(T) data do not exhibit any clear feature around TC, further indicating that the FM ordering is short-range and/or associated with itinerant moments. The Cp(T) in the paramagnetic temperature regime 25-300 K is well described by the sum of a Sommerfeld electronic contribution and Debye and Einstein lattice contributions where the latter suggests the occurrence of low-frequency optic modes associated with the heavy Ba atoms in the crystals., Comment: 12 pages, 10 captioned figures, 64 references
- Published
- 2020
22. Magnetic phase transitions in Eu(Co,Ni)2As2 single crystals
- Author
-
Sangeetha, N. S., Pakhira, Santanu, Ryan, D. H., Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3-4% of randomly-distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(T) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu{+2} spins-7/2 for x = 0 and x = 1 as previously reported. The chi(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82, a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65 a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity data for x = 0.2--0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 K to 25 K, respectively. Electrical resistivity measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, {151}Eu Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect., Comment: 25 pages, 28 captioned figures, 8 tables, 63 references; accepted for Physical Review Materials
- Published
- 2020
- Full Text
- View/download PDF
23. Ferromagnetic cluster-glass phase in Ca(Co,Ir)2As2 crystals
- Author
-
Pakhira, Santanu, Sangeetha, N. S., Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Single crystals of Ca[Co_(2-x)Ir_(x)]_(2-y)As2 with 0 <= x <= 0.35 and 0.10 <= y <= 0.14 have been grown using the self-flux technique and characterized by single-crystal x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, magnetization M and magnetic susceptibility chi measurements versus temperature T, magnetic field H, and time t, and heat capacity Cp(H,T) measurements. The XRD refinements reveal that all the Ir-substituted crystals crystallize in a collapsed-tetragonal structure as does the parent CaCo_(2-y)As2 compound. A small 3.3% Ir substitution for Co in CaCo_(1.86)As2 drastically lowers the A-type antiferromagnetic (AFM) transition temperature TN from 52 to 23 K with a significant enhancement of the Sommerfeld electronic heat-capacity coefficient. The positive Weiss temperatures obtained from Curie-Weiss fits to the chi(T>TN) data indicate that the dominant magnetic interactions are ferromagnetic (FM) for all x. A magnetic phase boundary is inferred to be present between x = 0.14 and x = 0.17 from a discontinuity in the x dependences of the effective moment and Weiss temperature in the Curie-Weiss fits. FM fluctuations that strongly increase with increasing x are also revealed from the chi(T) data. The magnetic ground state for x >= 0.17 is a spin glass as indicated by hysteresis in chi(T) between field-cooling and zero-field-cooling measurements and from the relaxation of M in a small field that exhibits a stretched-exponential time dependence. The spin glass has a small FM component to the ordering and is hence inferred to be comprised of small FM clusters. A logarithmic T dependence of Cp at low T for x = 0.14 is consistent with the presence of significant FM quantum fluctuations. This composition is near the T = 0 boundary at x = 0.16 between the A-type AFM phase containing ferromagnetically-aligned layers of spins and the FM cluster-glass phase., Comment: 16 pages, 18 captioned figures, 6 tables, 68 references
- Published
- 2020
- Full Text
- View/download PDF
24. Magnetic, thermal, and electronic-transport properties of EuMg2Bi2 single crystals
- Author
-
Pakhira, Santanu, Tanatar, M. A., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi2 single crystals are presented. The Eu{+2} spins-7/2 in EuMg2Bi2 exhibit an antiferromagnetic (AFM) transition at a temperature TN = 6.7 K, as previously reported. By analyzing the anisotropic magnetic susceptibility chi data below TN in terms of molecular-field theory (MFT), the AFM structure is inferred to be a c-axis helix, where the ordered moments in the hexagonal ab-plane layers are aligned ferromagnetically in the ab plane with a turn angle between the moments in adjacent moment planes along the c axis of about 120 deg. The magnetic heat capacity exhibits a lambda anomaly at TN with evidence of dynamic short-range magnetic fluctuations both above and below TN. The high-T limit of the magnetic entropy is close to the theoretical value for spins-7/2. The in-plane electrical resistivity rho(T) data indicate metallic character with a mild and disorder-sensitive upturn below Tmin = 23 K. An anomalous rapid drop in rho(T) on cooling below TN as found in zero field is replaced by a two-step decrease in magnetic fields. The rho(T) measurements also reveal an additional transition below TN in applied fields of unknown origin that is not observed in the other measurements and may be associated with an incommensurate to commensurate AFM transition. The dependence of TN on the c-axis magnetic field Hperp was derived from the field-dependent chi(T), Cp(T), and rho(T) measurements. This TN(Hperp) was found to be consistent with the prediction of MFT for a c-axis helix with S = 7/2 and was used to generate a phase diagram in the Hperp-T plane., Comment: 15 pages, 16 captioned figures, 3 tables, 67 references. New figure and text added
- Published
- 2020
- Full Text
- View/download PDF
25. Instability and evolution of the magnetic ground state in metallic perovskites GdRh$_3$C$_{1-x}$B$_x$
- Author
-
Pandey, Abhishek, Singh, A. K., Dan, Shovan, Ghosh, K., Das, I., Tripathi, S., Kumar, U., Ranganathan, R., Johnston, D. C., and Mazumdar, Chandan
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We report investigations of the structural, magnetic, electrical transport and thermal properties of five compositions of the metallic perovskite GdRh$_3$C$_{1-x}$B$_x$ ($0.00 \le x \le 1.00$). Our results show that all the five compositions undergo magnetic ordering at low temperatures, but the nature of the ordered state is significantly different in the carbon- and the boron-rich compositions, where the former shows signatures of an amplitude-modulated magnetic structure and the latter exhibits evidences of an equal-moment incommensurate antiferromagnetic ordering. We also observe a remarkable field-dependent evolution of conduction carrier polarization in the compositionally disordered compounds. The outcomes indicate that this system is energetically situated in proximity to a magnetic instability where small variations in the control parameter(s), such as lattice constant and/or electron density, lead to considerably different ground states., Comment: 10 pages and 9 figures
- Published
- 2020
- Full Text
- View/download PDF
26. Localized Singlets and Ferromagnetic Fluctuations in the Dilute Magnetic Topological Insulator Sn$_{0.95}$Mn$_{0.05}$Te
- Author
-
Vaknin, D., Pakhira, Santanu, Schlagel, D., Islam, F., Zhang, Jianhua, Pajerowski, D., Wang, C. Z., Johnston, D. C., and McQueeney, R. J.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The development of long-range ferromagnetic (FM) order in dilute magnetic topological insulators can induce dissipationless electronic surface transport via the quantum anomalous Hall effect. We measure the magnetic excitations in a prototypical magnetic topological crystalline insulator, Sn$_{0.95}$Mn$_{0.05}$Te, using inelastic neutron scattering. Neutron diffraction and magnetization data indicate that our Sn$_{0.95}$Mn$_{0.05}$Te sample has no FM long-range order above a temperature of 2 K. However, we observe slow, collective FM fluctuations ($<$~70 $\mu$eV), indicating proximity to FM order. We also find a series of sharp peaks originating from local excitations of antiferromagnetically (AF) coupled and isolated Mn-Mn dimers with $J_{\rm AF}=460$~$\mu$eV\@. The simultaneous presence of collective and localized components in the magnetic spectra highlight different roles for substituted Mn ions, with competition between FM order and the formation of AF-coupled Mn-Mn dimers.
- Published
- 2019
- Full Text
- View/download PDF
27. Helical magnetic ordering in Sr(Co1-xNix)2As2
- Author
-
Wilde, J. M., Kreyssig, A., Vaknin, D., Sangeetha, N. S., Li, Bing, Tian, W., Orth, P. P., Johnston, D. C., Ueland, B. G., and McQueeney, R. J.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
SrCo2As2 is a peculiar itinerant magnetic system that does not order magnetically, but inelastic neutron scattering experiments observe the same stripe-type antiferromagnetic (AF) fluctuations found in many of the Fe-based superconductors along with evidence of magnetic frustration. Here we present results from neutron diffraction measurements on single crystals of Sr(Co1-xNix)2As2 that show the development of long-range AF order with Ni-doping. However, the AF order is not stripe-type. Rather, the magnetic structure consists of ferromagnetically-aligned (FM) layers (with moments laying in the layer) that are AF arranged along c with an incommensurate propagation vector of (0 0 tau), i.e. a helix. Using high-energy x-ray diffraction, we find no evidence for a temperature-induced structural phase transition that would indicate a collinear AF order. This finding supports a picture of competing FM and AF interactions within the square transition-metal layers due to flat-band magnetic instabilities. However, the composition dependence of the propagation vector suggests that far more subtle Fermi surface and orbital effects control the interlayer magnetic correlations., Comment: 6 pages, 3 figures
- Published
- 2019
- Full Text
- View/download PDF
28. Competing magnetic phases and itinerant magnetic frustration in SrCo$_{2}$As$_{2}$
- Author
-
Li, Bing, Ueland, B. G., Jayasekara, W. T., Abernathy, D. L., Sangeetha, N. S., Johnston, D. C., Ding, Qing Ping, Furukawa, Y., Orth, P. P., Kreyssig, A., Goldman, A. I., and McQueeney, R. J.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo$_{2}$As$_{2}$ is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo$_{2}$As$_{2}$ below $T\approx100$ K centered at the stripe-type AF propagation vector of $(\frac{1}{2},~\frac{1}{2})$, and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability towards FM ordering to an instability towards stripe-type AF ordering on cooling, and show results from Monte-Carlo simulations for a $J_{1}$-$J_{2}$ Heisenberg model that illustrate how the crossover develops as a function of the frustration ratio $-J_1/(2J_2)$. By putting our INS data on an absolute scale, we quantitatively compare them and our magnetization data to exact-diagonalization calculations for the $J_{1}$-$J_{2}$ model [N. Shannon et al., Eur. Phys. J. B 38, 599 (2004)], and show that the calculations predict a lower level of magnetic frustration than indicated by experiment. We trace this discrepancy to the large energy scale of the fluctuations ($J_{\text{avg}}\gtrsim75$ meV), which, in addition to the steep dispersion, is more characteristic of itinerant magnetism., Comment: To appear in Phys. Rev. B
- Published
- 2019
- Full Text
- View/download PDF
29. Non-Fermi-liquid behaviors associated with a magnetic quantum-critical point in Sr(Co{1-x}Ni{x})2As2 single crystals
- Author
-
Sangeetha, N. S., Wang, L. L., Smirnov, A. V., Smetana, V., Mudring, A. -V., Johnson, D. D., Tanatar, M. A., Prozorov, R., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Electron-doped Sr(Co{1-x}Ni{x})2As2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD), magnetic susceptibility chi(H,T), isothermal magnetization M(H,T), heat capacity Cp(H,T), and electrical resistivity ho(H,T) measurements versus applied magnetic field H and temperature T. The chi(T) data show that the crystals exhibit an antiferromagnetic (AFM) ground state almost immediately upon Ni doping on the Co site. Ab-initio electronic-structure calculations for x = 0 and x = 0.15 indicate that a flat band with a peak in the density of states just above the Fermi energy is responsible for this initial magnetic-ordering behavior on Ni doping. The Curie-Weiss-like T dependence of \chi in the paramagnetic (PM) state indicates dominant ferromagnetic (FM) interactions. The small ordered moments ~0.1 muB per transition metal atom and the values of the Rhodes-Wohlfarth ratio indicate that the magnetism is itinerant. The Cp(T) at low T exhibits Fermi-liquid behavior for 0 < x < 0.15 whereas an evolution to a logarithmic non-Fermi-liquid (NFL) behavior is found for x = 0.2 to 0.3. The logarithmic dependence is suppressed in an applied magnetic field. The low- T rho(H = 0,T) data show a T^2 dependence for 0 < x < 0.20 and a power-law dependence with n < 2 for x = 0.20 and 0.30. These low-T NFL behaviors observed in the Cp and rho measurements are most evident near the quantum-critical concentration x ~ 0.3 at which a T = 0 composition-induced transition from the AFM phase to the PM phase occurs., Comment: 32 pages, 27 captioned figures, 8 tables
- Published
- 2019
- Full Text
- View/download PDF
30. Helical Antiferromagnetic Ordering in EuNi{1.95}As2
- Author
-
Sangeetha, N. S., Smetana, V., Mudring, A. -V., and JOhnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
The Eu{+2} spins-7/2 in EuNi2As2 with the body-centered tetragonal ThCr2Si2 structure order antiferromagnetically below the Neel temperature TN =15 K into a helical antiferromagnetic (AFM) structure with the helix axis aligned along the tetragonal c axis and the Eu ordered moments aligned ferromagnetically within the ab plane as previously reported from neutron diffraction measurements [T. Jin, et al., Phys. Rev. B 99, 014425 (2019)]. Here we study the crystallographic, magnetic, thermal, and electronic transport properties of Bi-flux-grown single crystals using single-crystal x-ray diffraction, anisotropic magnetic susceptibility chi, isothermal magnetization M, heat capacity Cp, and electrical resistivity rho measurements versus applied magnetic field H and temperature T. Vacancies are found on the Ni sites corresponding to the composition EuNi{1.95}As2. The chi{ab}(T) data below TN are fitted well by molecular field theory (MFT), and the helix turn angle kd and the Eu-Eu Heisenberg exchange constants are extracted from the fit parameters. The kd value is in good agreement with the neutron-diffraction result. The magnetic contribution to the zero-field heat capacity below TN is also fitted by MFT. The isothermal in-plane magnetization Mab exhibits two metamagnetic transitions versus H, whereas Mc(T = 2 K) is nearly linear up to H =14 T, both behaviors being consistent with MFT. The Mc(H,T), rho(Hc,T), and Cp(Hc,T) data yielded a Hc-T phase diagram separating the AFM and paramagnetic phases in good agreement with MFT. Anisotropic chi(T) literature data for the ThCr2Si2-type helical antiferromagnet EuRh2As2 are also fitted well by MFT. A comparison is made between the crystallographic and magnetic properties of ThCr2Si2- type EuM2Pn2 compounds with M = Fe, Co, Ni, Cu, or Rh, and Pn = P or As, where only ferromagnetic and c-axis helical AFM structures are found., Comment: 17 pages, 5 tables, 17 captioned figures
- Published
- 2019
- Full Text
- View/download PDF
31. Antiferromagnetic Stacking of Ferromagnetic Layers and Doping Controlled Phase Competition in Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$
- Author
-
Li, Bing, Sizyuk, Y., Sangeetha, N. S., Wilde, J. M., Das, P., Tian, W., Johnston, D. C., Goldman, A. I., Kreyssig, A., Orth, P. P., McQueeney, R. J., and Ueland, B. G.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
In search of a quantum phase transition between the two-dimensional ($2$D) ferromagnetism of CaCo$_{2-y}$As$_{2}$ and stripe-type antiferromagnetism in SrCo$_{2}$As$_{2}$, we rather find evidence for $1$D magnetic frustration between magnetic square Co layers. We present neutron diffraction data for Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$ that reveal a sequence of $x$-dependent magnetic transitions which involve different stacking of $2$D ferromagnetically-aligned layers with different magnetic anisotropy. We explain the $x$-dependent changes to the magnetic order by utilizing classical analytical calculations of a $1$D Heisenberg model where single-ion magnetic anisotropy and frustration of antiferromagnetic nearest- and next-nearest-layer exchange are all composition dependent.
- Published
- 2019
- Full Text
- View/download PDF
32. EPR measurements of Eu{+2} spins in metallic EuCo{2-y}As2 single crystals
- Author
-
Sangeetha, N. S., Cady, S. D., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The Eu{+2} spins S = 7/2 in the metallic compound EuCo{2-y}As2 order into an antiferromagnetic helical structure below a Neel temperature TN = 40 to 45 K. The effective magnetic moment mu_eff of the Eu spins in the paramagnetic state from 100 to 300 K is found from static magnetic susceptibility measurements to be enhanced by about 7% compared to the value expected for spectroscopic splitting factor g = 2, and the saturation moment at high applied fields H and low temperatures T is also sometimes enhanced. Here electron-paramagnetic-resonance (CW EPR) measurements versus applied magnetic field H at fixed X-band rf (microwave) angular frequency omega were carried out using a linearly-polarized rf magnetic field oriented perpendicular to H to study the microscopic magnetic properties of the Eu spins. In order to analyze the data, the complex magnetic susceptibility chi(omega) at fixed H was used that was derived for linearly-polarized rf fields from the modified Bloch equations [M. A. Garstens and J. I. Kaplan, Phys. Rev. 99, 459 (1955)] (GK). It is shown that their formulation when applied to calculate the Dysonian absorptive susceptibility chi_D''(H) of local magnetic moments in metals yields a prediction that can be very different from the traditionally-used form of chi_D''(H). By fitting the derivative of the field-swept CW EPR data for EuCo{2-y}As2 by chi_D''(H) at fixed omega derived from the GK chi_D''(omega) at fixed H, the Eu spin spectroscopic splitting factor (g-factor) is found to be approximately 2.00 from 300 to ~125 K, and then to continuously increase to approximately 2.16 on further cooling to 50 K. We speculate that the enhancement of the Eu g-factor on cooling from 125 to 50 K arises from continuously-increasing local short-range ferromagnetic correlations between the Co 3d-band electrons and the Eu spins., Comment: 13 pages, 8 figures. The theoretical chi_D"(H) was obtained from the modified Bloch equations instead of from the Bloch equations as done previously. The temperature-dependences of the fitting parameters for the EPR spectra are therefore also different
- Published
- 2018
33. Orbital- and spin-driven lattice instabilities in quasi-one-dimensional CaV$_2$O$_4$
- Author
-
Watanabe, T., Kobayashi, S., Hara, Y., Xu, J., Lake, B., Yan, J. -Q., Niazi, A., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Calcium vanadate CaV$_2$O$_4$ has a crystal structure of quasi-one-dimensional zigzag chains composed of orbital-active V$^{3+}$ ions and undergoes successive structural and antiferromagnetic phase transitions at $T_s\sim 140$ K and $T_N \sim 70$ K, respectively. We perform ultrasound velocity measurements on a single crystal of CaV$_2$O$_4$. The temperature dependence of its shear elastic moduli exhibits huge Curie-type softening upon cooling that emerges above and below $T_s$ depending on the elastic mode. The softening above $T_s$ suggests the presence of either onsite Jahn-Teller-type or intersite ferro-type orbital fluctuations in the two inequivalent V$^{3+}$ zigzag chains. The softening below $T_s$ suggests the occurrence of a dimensional spin-state crossover, from quasi-one to three, that is driven by the spin-lattice coupling along the inter-zigzag-chain orthogonal direction. The successive emergence of the orbital- and spin-driven lattice instabilities above and below $T_s$, respectively, is unique to the orbital-spin zigzag chain system of CaV$_2$O$_4$., Comment: 7 pages, 6 figures
- Published
- 2018
- Full Text
- View/download PDF
34. Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo{2-y}As2
- Author
-
Sangeetha, N. S., Anand, V. K., Cuervo-Reyes, Eduardo, Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
The compound EuCo{2-y}As2 with the tetragonal ThCr2Si2 structure is known to contain Eu{+2} ions with spin S = 7/2 that order below a temperature TN = 47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal ab plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities chi{ab}(T < TN) for several crystals are reported that are fitted well by unified molecular field theory (MFT), and the Eu-Eu exchange interactions Jij are extracted from the fits. High-field magnetization M data for magnetic fields H||ab reveal what appears to be a first-order spin-flop transition followed at higher field by a second-order metamagnetic transition of unknown origin, and then by another second-order transition to the paramagnetic (PM) state. For H||c, the magnetization shows only a second-order transition from the canted AFM to the PM state, as expected. The critical fields for the AFM to PM transition are in approximate agreement with the predictions of MFT. Heat capacity Cp measurements in zero and high H are reported. Phase diagrams for H||c and H||ab versus T are constructed from the high-field M(H,T) and Cp(H,T) measurements. The magnetic part Cmag(T, H = 0) of Cp(T, H = 0) is extracted and is fitted rather well below TN by MFT, although dynamic short-range AFM order is apparent in Cmag(T) up to about 70 K, where the molar entropy attains its high-T limit of R ln8., Comment: 29 pages, 30 figures including 62 subfigures, 8 tables, 84 references
- Published
- 2018
- Full Text
- View/download PDF
35. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca{1-x}Sr{x}Co{2-y}As{2}
- Author
-
Sangeetha, N. S., Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The inference of Ying et al. [EPL 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure (AFMI) at small x to ab-plane alignment in an unknown AFM structure (AFMII) at larger x in Ca(1-x)Sr(x)Co(2-y)As(2) with the body-centered tetragonal ThCr2Si2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 < x < 0.3 between these two phases. In this region the magnetic susceptibility versus temperature chi_ab(T) measured with magnetic fields H applied in the ab plane exhibit typical AFM behaviors with cusps at the Neel temperatures of about 65 K, whereas chi_c(T) and the low-temperature isothermal magnetization M_c(H) with H aligned along the c axis exhibit extremely soft ferromagnetic-like behaviors., Comment: 6 pages and 5 figures, plus 26 pages and 26 figures of Supplemental Information
- Published
- 2017
- Full Text
- View/download PDF
36. Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals
- Author
-
Sangeetha, N. S., Smetana, V., Mudring, A. -V., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Crystals of SrMn2Sb2 and BaMn2Sb2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity rho, heat capacity Cp, and magnetic susceptibility chi measurements versus temperature T, and magnetization versus field M(H) isotherm measurements. SrMn2Sb2 adopts the trigonal CaAl2Si2-type structure whereas BaMn2Sb2 crystallizes in the tetragonal ThCr2Si2-type structure. The rho(T) data indicate semiconducting behaviors for both compounds with activation energies of 0.35 eV for SrMn2Sb2 and 0.16 eV for BaMn2Sb2. The chi(T) and Cp(T) data reveal antiferromagnetic (AFM) ordering at TN = 110 K for SrMn2Sb2 and 450~K for BaMn2Sb2. The anisotropic chi(T < TN) data also show that the ordered moments in SrMn2Sb2 are aligned in the hexagonal ab plane whereas the ordered moments in BaMn2Sb2 are aligned collinearly along the tetragonal c axis. The ab-plane M(H) data for SrMn2Sb2 exhibit a continuous metamagnetic transition at low fields 0 < H < 1 T, whereas BaMn2Sb2 exhibits no metamagnetic transitions up to 5.5 T. The chi(T) data for both compounds and the Cp(T) data for SrMn2Sb2 and BaMn2Sb2 indicate strong dynamic short-range AFM correlations above their respective TN up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl2Si2 and ThCr2Si2 crystal structures show that the TN values for the CaAl2Si2-type compounds are much smaller than those for the ThCr2Si2-type materials., Comment: 13 pages, 10 figures, 75 references
- Published
- 2017
- Full Text
- View/download PDF
37. NMR studies of the incommensurate helical antiferromagnet EuCo2P2 : determination of the antiferromagnetic propagation vector
- Author
-
Higa, Nonoka, Ding, Qing-Ping, Yogi, Mamoru, Sangeetha, N. S., Hedo, Masato, Nakama, Takao, Onuki, Yoshichika, Johnston, D. C., and Furukawa, Yuji
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Recently Ding et al. [Phys. Rev. B 95, 184404 (2017)] reported that their nuclear magnetic resonance (NMR) study on EuCo$_2$As$_2$ successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out $^{153}$Eu, $^{31}$P and $^{59}$Co NMR measurements on the helical antiferromagnet EuCo$_2$P$_2$ with an AFM ordering temperature $T_{\rm N}$ = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by $^{153}$Eu and $^{31}$P NMR spectra on single crystalline EuCo$_2$P$_2$ in zero magnetic field at 1.6 K and its external magnetic field dependence. Furthermore, based on $^{59}$Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0, 0, 0.73 $\pm$ 0.09)2$\pi$/$c$ where $c$ is the $c$-axis lattice parameter. The temperature dependence of k is also discussed., Comment: 8 pages, 10 figures, accepted for publication in Phys. Rev. B. arXiv admin note: substantial text overlap with arXiv:1704.06293
- Published
- 2017
- Full Text
- View/download PDF
38. Itinerant G-type antiferromagnetic order in SrCr$_2$As$_2$
- Author
-
Das, Pinaki, Sangeetha, N. S., Lindemann, George R., Heitmann, T. W., Kreyssig, A., Goldman, A. I., McQueeney, R. J., Johnston, D. C., and Vaknin, D.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Neutron diffraction and magnetic susceptibility studies of a polycrystalline SrCr$_2$As$_2$ sample reveal that this compound is an itinerant G-type antiferromagnet below the N${\rm \acute{e}}$el temperature $T_{\textrm N}$ = 590(5) K with the Cr magnetic moments aligned along the tetragonal $c$ axis. The system remains tetragonal to the lowest measured temperature ($\sim$12 K). The lattice parameter ratio $c/a$ and the magnetic moment saturate at about the same temperature below $\sim$ 200 K, indicating a possible magnetoelastic coupling. The ordered moment, $\mu=1.9(1)~\mu_{\rm B}$/Cr, measured at $T = 12$ K, is significantly reduced compared to its localized value ($4~\mu_{\rm B}$/Cr) due to the itinerant character brought about by the hybridization between the Cr $3d$ and As $4p$ orbitals., Comment: 6 pages, 5 figures
- Published
- 2017
- Full Text
- View/download PDF
39. NMR Determination of an Incommensurate Helical Antiferromagnetic Structure in EuCo2As2
- Author
-
Ding, Q. -P., Higa, N., Sangeetha, N. S., Johnston, D. C., and Furukawa, Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We report $^{153}$Eu, $^{75}$As and $^{59}$Co nuclear magnetic resonance (NMR) results on EuCo$_2$As$_2$ single crystal. Observations of $^{153}$Eu and $^{75}$As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature $T_{\rm N}$ = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo$_2$As$_2$. Furthermore, based on $^{59}$Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector ${\bf k}$ = (0, 0, 0.73 $\pm$ 0.07)2$\pi$/$c$ where $c$ is the $c$ lattice parameter. Thus the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs., Comment: 6 pages, 4 figures, accepted for publication in Phys.Rev. B
- Published
- 2017
- Full Text
- View/download PDF
40. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn$_{2}$As$_{2}$
- Author
-
Ramazanoglu, M., Sapkota, A., Pandey, Abhishek, Lamsal, J., Abernathy, D. L., Niedziela, J. L., Stone, M. B., Kreyssig, A., Goldman, A. I., Johnston, D. C., and McQueeney, R. J.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
BaMn$_{2}$As$_{2}$ is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the N\'eel temperature ($T_\mathrm{N}$) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different powder samples of Ba$_{1-x}$K$_{x}$Mn$_{2}$As$_{2}$ with $x=$0, 0.125 and 0.25 to study the effect of hole doping and metallization on the spin dynamics of these compounds. We compare the neutron intensities to a linear spin wave theory approximation to the $J_{1}-J_{2}-J_{c}$ Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of $T_\mathrm{N}$ with doping., Comment: 12 pages, 11 figures
- Published
- 2017
- Full Text
- View/download PDF
41. Suppression of magnetic order in CaCo$_{1.86}$As$_{2}$ with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$
- Author
-
Jayasekara, W. T., Pandey, Abhishek, Kreyssig, A., Sangeetha, N. S., Sapkota, A., Kothapalli, K., Anand, V. K., Tian, W., Vaknin, D., Johnston, D. C., McQueeney, R. J., Goldman, A. I., and Ueland, B. G.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science ,Condensed Matter - Superconductivity - Abstract
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0\leq x\leq1$, $1.86\leq y \leq 2$, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the $c$ axis, persists for $x\lesssim0.12(1)$. The antiferromagnetic order is smoothly suppressed with increasing $x$, with both the ordered moment and N\'{e}el temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for $x\leq0.25$, nor does ferromagnetic order for $x$ up to at least $x=0.104$, and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo$_{1.86}$As$_{2}$ to the tetragonal (T) phase of CaFe$_{2}$As$_{2}$ occurs. These results suggest that hole doping CaCo$_{1.86}$As$_{2}$ has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca., Comment: 12 pages, 16 Figures
- Published
- 2017
- Full Text
- View/download PDF
42. Oscillating magnetoresistance due to fragile spin structure in metallic GdPd$_3$
- Author
-
Pandey, Abhishek, Mazumdar, Chandan, Ranganathan, R., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades--colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the investigation of oscillating MR in a cubic intermetallic compound GdPd$_3$, which is the only compound that exhibits MR oscillations between positive and negative values. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd$_3$ is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system--a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd$_3$ are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions., Comment: 10 pages, 7 figures. A slightly modified version is published in Scientific Reports
- Published
- 2016
- Full Text
- View/download PDF
43. EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet
- Author
-
Sangeetha, N. S., Cuervo-Reyes, Eduardo, Pandey, Abhishek, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins 7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN = 66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab-plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility chi, high-field magnetization and magnetic heat capacity of EuCo2P2 single crystals at temperature T < TN with the predictions of our recent formulation of molecular field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~ T^3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the ab-plane and AFM interactions between nearest- and next-nearest planes, in agreement with the MFT analysis of chi{ab}(T < TN)., Comment: 20 pages, 17 figures, 3 tables, 46 references. This is an extended replacement of arXiv:1512.02958 with an additional coauthor
- Published
- 2016
- Full Text
- View/download PDF
44. Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn2As2
- Author
-
Anand, V. K. and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
We report magnetic susceptibility \chi, isothermal magnetization M, heat capacity C_p and electrical resistivity \rho measurements on undoped EuMn2As2 and K-doped Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 single crystals with the trigonal CaAl2Si2-type structure as a function of temperature T and magnetic field H. EuMn2As2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu+2 spins S=7/2 at T_N1 = 15 K from C_p(T) and \chi(T) data with a likely spin-reorientation transition at T_N2 = 5.0 K. The Mn+2 3d5 spins-5/2 exhibit AFM ordering at T_N = 142 K from all three types of measurements. The M(H) isotherm and \chi(T) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu0.96K0.04Mn2As2 is sufficient to induce a metallic ground state. Evidence is found for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn2As2 versus both T and H. For metallic Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2, an anomalous S-shape T dependence of \rho related to the Mn magnetism is found. Upon cooling from 200 K, \rho exhibits a strong negative curvature, reaches maximum positive slope at the Mn T_N ~ 150 K, and then continues to decrease but more slowly below T_N. This suggests that dynamic short-range AFM order of the Mn spins above the Mn T_N strongly suppresses the resistivity, contrary to the conventional decrease of \rho that is only observed upon cooling below T_N of an antiferromagnet., Comment: 21 pages, 22 figures, 4 Tables
- Published
- 2016
- Full Text
- View/download PDF
45. Antiferromagnetism in trigonal SrMn2As2 and CaMn2As2 single crystals
- Author
-
Sangeetha, N. S., Pandey, Abhishek, Benson, Zackery A., and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Crystallographic, electronic transport, thermal and magnetic properties are reported for SrMn2As2 and CaMn2As2 single crystals grown using Sn flux. Rietveld refinements of powder x-ray diffraction data show that the two compounds are isostructural and crystallize in the trigonal CaAl2Si2-type structure (space group P-3m1), in agreement with the literature. Electrical resistivity rho versus temperature T measurements demonstrate insulating ground states for both compounds with activation energies of 85 meV for SrMn2As2 and 61 meV for CaMn2As2. In a local-moment picture, the Mn^{+2} 3d^5 ions are expected to have high-spin S = 5/2 with spectroscopic splitting factor g = 2. Magnetic susceptibility chi and heat capacity measurements versus T reveal antiferromagnetic (AFM) transitions at TN = 120(2) K and 62(3) K for SrMn2As2 and CaMn2As2, respectively. The anisotropic chi(T < TN) data indicate that the hexagonal c axis is the hard axis and hence that the ordered Mn moments are aligned in the ab plane. The chi(T) for both compounds and Cp(T) data for SrMn2As2 show strong dynamic short-range AFM correlations from TN up to at least 900 K, likely associated with quasi-two-dimensional connectivity of strong AFM exchange interactions between the Mn spins within the corrugated honeycomb Mn layers parallel to the ab plane., Comment: 11 pages, 9 figures, 50 references; v2: added magnetic heat capacity data and analysis
- Published
- 2016
- Full Text
- View/download PDF
46. Collinear antiferromagnetism in trigonal SrMn$_{2}$As$_{2}$ revealed by single-crystal neutron diffraction
- Author
-
Das, Pinaki, Sangeetha, N. S., Pandey, Abhishek, Benson, Zackery A., Heitmann, T. W., Johnston, D. C., Goldman, A. I., and Kreyssig, A.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Fe pnictides and related materials have been a topic of intense research for understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn$_{2}$As$_{2}$ that crystallizes in a trigonal structure ($P\bar{3}m1$) and undergoes an antiferromagnetic (AFM) transition at $T_{\textrm c}$ $= 118(2)$ K. The magnetic susceptibility remains nearly constant at temperatures $T \le T_{\textrm N}$ with $\textbf{H}\parallel \textbf{c}$ whereas it decreases significantly with $\textbf{H}\parallel \textbf{ab}$. This shows that the ordered Mn moments lie in the $\textbf{ab}$-plane instead of aligning along the $\textbf{c}$-axis as in tetragonal BaMn$_{2}$As$_{2}$. Single-crystal neutron diffraction measurements on SrMn$_{2}$As$_{2}$ demonstrate that the Mn moments are ordered in a collinear N\'{e}el AFM phase with $180^\circ$ AFM alignment between a moment and all nearest neighbor moments in the basal plane and also perpendicular to it. Moreover, quasi-two-dimensional AFM order is manifested in SrMn$_{2}$As$_{2}$ as evident from the temperature dependence of the order parameter., Comment: 5 pages, 3 figures
- Published
- 2016
- Full Text
- View/download PDF
47. EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet
- Author
-
Sangeetha, N. S., Pandey, Abhishek, and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The Eu spins-7/2 in EuCo2P2 with the tetragonal ThCr2Si2-type structure have the prototypical noncollinear helical antiferromagnetic structure below the Neel temperature TN = 66.5 K as previously determined from single-crystal neutron diffraction measurements. The helix axis is along the c axis with the ordered moments aligned within the ab plane. Our recent formulation of molecular field theory (MFT) is found to quantitatively fit the anisotropic magnetic susceptibility of single-crystal EuCo2P2 at T < TN with a helix turn angle comparable to the neutron diffraction value. The experimental and MFT magnetic heat capacities at T < TN are also in good agreement. Values of the Heisenberg exchange interactions between the Eu spins-7/2 within the J0-Jz1-Jz2 MFT model are derived. The results demonstrate the robust applicability of the MFT to model the thermodynamic properties of noncollinear Heisenberg antiferromagnets., Comment: 5 pages, 5 figures
- Published
- 2015
48. Pressure-induced collapsed-tetragonal phase in SrCo2As2
- Author
-
Jayasekara, W. T., Kaluarachchi, U. S., Ueland, B. G., Pandey, Abhishek, Lee, Y. B., Taufour, V., Sapkota, A., Kothapalli, K., Sangeetha, N. S., Fabbris, G., Veiga, L. S. I., Feng, Yejun, Santos, A. M. dos, Bud'ko, S. L., Harmon, B. N., Canfield, P. C., Johnston, D. C., Kreyssig, A., and Goldman, A. I.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Strongly Correlated Electrons - Abstract
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order., Comment: 6 pages, 5 figures
- Published
- 2015
- Full Text
- View/download PDF
49. Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR
- Author
-
Wiecki, P., Roy, B., Johnston, D. C., Bud'ko, S. L., Canfield, P. C., and Furukawa, Y.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Strongly Correlated Electrons - Abstract
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic (AFM) and in-plane ferromagnetic (FM) wavevectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using $^{75}$As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors. These FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of $T_{\rm c}$ and the shape of the superconducting dome in these and other iron-pnictide families., Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Lett
- Published
- 2015
- Full Text
- View/download PDF
50. Ba{0.4}Rb{0.6}Mn2As2: A Prototype Half-Metallic Ferromagnet
- Author
-
Pandey, Abhishek and Johnston, D. C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Half-metallic ferromagnetism (FM) in single-crystal Ba{0.39(1)}Rb{0.61(1)}Mn2As2 below its Curie temperature TC = 103(2) K is reported. The magnetization M versus applied magnetic field H isotherm data at 1.8 K show complete polarization of the itinerant doped-hole magnetic moments that are introduced by substituting Rb for Ba. The material exhibits extremely soft FM, with unobservably small remanent magnetization and coercive field. Surprisingly, and contrary to typical itinerant FMs, the M(H) data follow the Arrott-plot paradigm that is based on a mean-field theory of local-moment FMs. The in-plane electrical resistivity data are fitted well by an activated-T^2 expression for T < TC, whereas the data sharply deviate from this model for T > TC. Hence the activated-T^2 resistivity model is an excellent diagnostic for determining the onset of half-metallic FM in this compound, which in turn demonstrates the presence of a strong correlation between the electronic transport and magnetic properties of the material. Together with previous data on 40% hole-doped Ba{0.6}K{0.4}Mn2As2, these measurements establish 61%-doped Ba{0.39}Rb{0.61}Mn2As2 as a prototype for a new class of half-metallic ferromagnets in which all the itinerant carriers in the material are ferromagnetic., Comment: 5 pages, 6 figures
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.