1. Dispersing and semi-flat bands in the wide band gap two-dimensional semiconductor bilayer silicon oxide
- Author
-
Pascal Pochet, Yannick J. Dappe, Johann Coraux, Patrick Le Fèvre, Luc Moreau, J. C. Alvarez-Quiceno, François Bertran, César González, Muriel Sicot, Bertrand Kierren, Julien E. Rault, Thomas Pierron, Geoffroy Kremer, Yannick Fagot-Revurat, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Fribourg Center for Nanomaterials, Département de Physique, Albert-Ludwigs-Universität Freiburg, Laboratory of Atomistic Simulation (LSIM), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Departamento de Fisica de Materiales, Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Department of Physics [Fribourg], Université de Fribourg = University of Fribourg (UNIFR), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Departamento de Física de Materiales [Madrid], Universidad Autónoma de Madrid (UAM), Instituto de Magnetismo Aplicado, Groupe Modélisation et Théorie (GMT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), G. K. acknowledges financial support from the Swiss National Science Foundation (SNSF) Grant No. P00P2 170597. The DFT calculations were done using French supercomputers (GENCI, # 6194) and the Predictive Simulation Center facility that gathers in Grenoble SPINTEC, L Sim and Leti. We thanks Professor N. Mousseau for useful discussions. C. G. acknowledges finantial support from the Community of Madrid through the project NANOMAGCOST CM-S2018/NMT-4321., and ANR-14-OHRI-0004,2DTransformers,Matériaux bidimensionnels à changement de phase(2014)
- Subjects
bilayer ,Materials science ,Band gap ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Molecular physics ,law.invention ,law ,0103 physical sciences ,Photoemission spectroscopy ,General Materials Science ,010306 general physics ,Electronic band structure ,Silicon oxide ,Condensed Matter - Materials Science ,business.industry ,Graphene ,Mechanical Engineering ,Bilayer ,Wide-bandgap semiconductor ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semiconductor ,Mechanics of Materials ,Density functional theory calculations ,2D silicon oxide film ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,0210 nano-technology ,business - Abstract
Epitaxial bilayer silicon oxide is a transferable two-dimensional material predicted to be a wide band gap semiconductor, with potential applications for deep UV optoelectronics, or as a building block of van der Waals heterostructures. The prerequisite to any sort of such applications is the knowledge of the electronic band structure, which we unveil using angle-resolved photoemission spectroscopy and rationalize with the help of density functional theory (DFT) calculations. We discover dispersing bands related to electronic delocalization within the top and bottom planes of the material, with two linear crossings reminiscent of those predicted in bilayer AA-stacked graphene, and semi-flat bands stemming from the chemical bridges between the two planes. This band structure is robust against exposure to air, and can be controlled by exposure to oxygen. We provide an experimental lower-estimate of the band gap size of 5 eV and predict a full gap of 7.36 eV using DFT calculations.
- Published
- 2020
- Full Text
- View/download PDF