Loujaine Yacine, Ali Khouzam, Abdelkader Mojtabi, Rachid Bennacer, Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, HESAM Université (HESAM)-HESAM Université (HESAM), Arts et Métiers ParisTech (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Normale Supérieure de Cachan - ENS Cachan (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
International audience; An analytical and numerical study of Soret-driven convection in a horizontal porous layer saturated by a binary fluid and subjected to uniform cross heat fluxes is presented. The flow is driven by the combined buoyancy effect due to temperature and induced mass fraction variations through a binary water ethanolmixture. In the first part of the study, a closed-form analytical solution in the limit of a large aspect ratio of the cell (A >> 1) is developed. We are mainly concerned with the determination of the mass fraction gradient of the component of interest along the horizontal direction, which determines the species eparation. In the second part, numerous numerical simulations are carried out in order to validate the analytical results and extend heat and mass transfer to an area not covered by the analytical study. Good agreement is found between analytical and numerical results concerning the species separation obtained for a unicellular flow. In this configuration, the Soret separation process is improved by two control parameters: the heat flux density imposed on the horizontal walls of the cell and the ratio, a, of heat flux density imposed on vertical walls to that on horizontal walls. The influence of the heat flux density ratio, a, on the transient regime (relaxation time) is also investigated numerically. We observe that an increase in the parameter a leads to a decrease in the relaxation time. Thus, for a cell heated from below withoutlateral heating, the onset of convection from the mechanical equilibrium state is analyzed. The linear stability analysis shows that the equilibrium solution loses its stability via a stationary bifurcation or a Hopf bifurcation depending on the separation ratio and the normalized porosity of the medium. The linear stability results are widely corroborated by direct 2D numerical simulations. The thresholds of various multicellular solutions are determined in terms of the governing parameters of the problem using nonlinear direct numerical simulations