1. Second-order invex functions in nonlinear programming.
- Author
-
Ivanov, Vsevolod Ivanov
- Subjects
- *
DIFFERENTIABLE functions , *NONLINEAR programming , *STATIONARY processes , *GLOBAL analysis (Mathematics) , *CONVEX functions , *CONSTRAINT satisfaction - Abstract
We introduce a notion of a second-order invex function. A Fréchet differentiable invex function without any further assumptions is second-order invex. It is shown that the inverse claim does not hold. A Fréchet differentiable function is second-order invex if and only if each second-order stationary point is a global minimizer. Two complete characterizations of these functions are derived. It is proved that a quasiconvex function is second-order invex if and only if it is second-order pseudoconvex. Further, we study the nonlinear programming problem with inequality constraints whose objective function is second-order invex. We introduce a notion of second-order type I objective and constraint functions. This class of problems strictly includes the type I invex ones. Then we extend a lot of sufficient optimality conditions with generalized convex functions to problems with second-order type I invex objective function and constraints. Additional optimality results, which concern type I and second-order type I invex data are obtained. An answer to the question when a kernel, which is not identically equal to zero, exists is given. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF