1. Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning.
- Author
-
Normand, Anne-Cécile, Chaline, Aurélien, Mohammad, Noshine, Godmer, Alexandre, Acherar, Aniss, Huguenin, Antoine, Ranque, Stéphane, Tannier, Xavier, and Piarroux, Renaud
- Subjects
ASPERGILLUS flavus ,MASS spectrometry ,DEEP learning ,CONVOLUTIONAL neural networks ,MATRIX-assisted laser desorption-ionization ,MEDICAL masks ,TIME-of-flight mass spectrometry - Abstract
The spread of fungal clones is hard to detect in the daily routines in clinical laboratories, and there is a need for new tools that can facilitate clone detection within a set of strains. Currently, Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry is extensively used to identify microbial isolates at the species level. Since most of clinical laboratories are equipped with this technology, there is a question of whether this equipment can sort a particular clone from a population of various isolates of the same species. We performed an experiment in which 19 clonal isolates of Aspergillus flavus initially collected on contaminated surgical masks were included in a set of 55 A. flavus isolates of various origins. A simple convolutional neural network (CNN) was trained to detect the isolates belonging to the clone. In this experiment, the training and testing sets were totally independent, and different MALDI-TOF devices (Microflex) were used for the training and testing phases. The CNN was used to correctly sort a large portion of the isolates, with excellent (> 93%) accuracy for two of the three devices used and with less accuracy for the third device (69%), which was older and needed to have the laser replaced. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF