1. α-Hydroxy coordination of mononuclear vanadyl citrate, malate and S-citramalate with N-heterocycle ligand, implying a new protonation pathway of iron-vanadium cofactor in nitrogenase.
- Author
-
Chen CY, Chen ML, Chen HB, Wang H, Cramer SP, and Zhou ZH
- Subjects
- Algal Proteins chemistry, Bacterial Proteins chemistry, Carboxylic Acids chemistry, Crystallography, X-Ray, Hydrogen Bonding, Hydrogen-Ion Concentration, Ligands, Molecular Structure, Solutions, Static Electricity, Stereoisomerism, Coordination Complexes chemistry, Malates chemistry, Metalloproteins chemistry, Nitrogenase chemistry, Organometallic Compounds chemistry, Protons
- Abstract
Unlike the most of α-alkoxy coordination in α-hydroxycarboxylates to vanadium, novel α-hydroxy coordination to vanadium(IV) has been observed for a series of chiral and achiral monomeric α-hydroxycarboxylato vanadyl complexes [VO(H2cit)(bpy)]·2H2O (1), [VO(Hmal)(bpy)]·H2O (2), [VO(H2cit)(phen)]·1.5H2O (3), [VO(Hmal)(phen)]·H2O (4), and [(Δ)VO(S-Hcitmal)(bpy)]·2H2O (5), [VO(H2cit)(phen)]2·6.5H2O (6), which were isolated from the reactions of vanadyl sulfate with α-hydroxycarboxylates and N-heterocycle ligands in acidic solution. The complexes feature a tridentate citrate, malate or citramalate that chelates to vanadium atom through their α-hydroxy, α-carboxy and β-carboxy groups; while the other β-carboxylic acidic group of citrate is free to participate strong hydrogen bonds with lattice water molecule. The neutral α-hydroxy group also forms strong intermolecular hydrogen bonds with water molecule and the negatively-charged α-carboxy group in the environment. The inclusion of a hydrogen ion in α-alkoxy group results in the formation of a series of neutral complexes with one less positive charge. There are two different configurations of citrate with respect to the trans-position of axial oxo group, where the complex with trans-hydroxy configuration seems more stable with less hindrance. The average bond distances of V-Ohydroxy and V-Oα-carboxy are 2.196 and 2.003Å respectively, which are comparable to the VO distance (2.15Å) of homocitrate in FeV-cofactor of V-nitrogenase. A new structural model is suggested for R-homocitrato iron vanadium cofactor as VFe7S9C(R-Hhomocit) (H4homocit=homocitric acid) with one more proton in homocitrate ligand., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF