1. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters.
- Author
-
Milunovic MNM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, and Arion VB
- Subjects
- Humans, Animals, Mice, Cell Line, Tumor, Cell Proliferation drug effects, Structure-Activity Relationship, Polymerization drug effects, Coordination Complexes pharmacology, Coordination Complexes chemistry, Coordination Complexes chemical synthesis, Pyridines pharmacology, Pyridines chemistry, Pyridines chemical synthesis, Tubulin Modulators pharmacology, Tubulin Modulators chemical synthesis, Tubulin Modulators chemistry, Drug Screening Assays, Antitumor, Models, Molecular, Thiosemicarbazones chemistry, Thiosemicarbazones pharmacology, Thiosemicarbazones chemical synthesis, Antineoplastic Agents pharmacology, Antineoplastic Agents chemical synthesis, Antineoplastic Agents chemistry, Ribonucleotide Reductases antagonists & inhibitors, Ribonucleotide Reductases metabolism, Tubulin metabolism, Morpholines pharmacology, Morpholines chemistry, Morpholines chemical synthesis, Copper chemistry
- Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H
2 L3 . Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the H2 L6 , with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3 - 6 . Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y• ) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.- Published
- 2024
- Full Text
- View/download PDF