1. Potential scientific synergies in weak lensing studies between the CSST and Euclid space probes
- Author
-
D. Z. Liu, X. M. Meng, X. Z. Er, Z. H. Fan, M. Kilbinger, G. L. Li, R. Li, T. Schrabback, D. Scognamiglio, H. Y. Shan, C. Tao, Y. S. Ting, J. Zhang, S. H. Cheng, S. Farrens, L. P. Fu, H. Hildebrandt, X. Kang, J. P. Kneib, X. K. Liu, Y. Mellier, R. Nakajima, P. Schneider, J. L. Starck, C. L. Wei, A. H. Wright, H. Zhan, HEP, INSPIRE, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
large-scale structure of universe ,photometric redshifts ,spectroscopy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,hyper suprime-cam ,gravitational lensing ,FOS: Physical sciences ,weak ,Astronomy and Astrophysics ,telescopes ,telescope ,dark matter ,gravitational lensing: weak ,surveys ,Space and Planetary Science ,cfhtlens ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,dark energy ,constraints ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,cosmology ,dark energy survey ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. With the next generation of large surveys poised to join the ranks of observational cosmology in the near future, it is important to explore their potential synergies and to maximize their scientific outcomes. In this study, we aim to investigate the complementarity of two upcoming space missions: Euclid and the China Space Station Telescope (CSST), both of which will be focused on weak gravitational lensing for cosmology. In particular, we analyze the photometric redshift (photo-z) measurements by combining NUV, 2006;gy bands from CSST with the VIS, Y,2006;J,2006;H bands from Euclid, and other optical bands from the ground-based Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) and Dark Energy Survey. We also consider the advantages of combining the two space observational data in simplifying image deblending. For Euclid, weak lensing measurements use the broad optical wavelength range of 550-900 nm, for which chromatic point-spread function (PSF) effects are significant. For this purpose, the CSST narrow-band data in the optical can provide valuable information for Euclid to obtain more accurate PSF measurements and to calibrate the color and color-gradient biases for galaxy shear measurements., Methods. We created image simulations, using the Hubble Deep UV data as the input catalog, for different surveys and quantified the photo-z performance using the EAZY template fitting code. For the blending analyses, we employed high-resolution HST-ACS CANDELS F606W and F814W data to synthesize mock simulated data for Euclid, CSST, and an LSST-like survey. We analyzed the blending fraction for different cases as well as the blending effects on galaxy photometric measurements. Furthermore, we demonstrated that CSST can provide a large enough number of high signal-to-noise ratio multi-band galaxy images to calibrate the color-gradient biases for Euclid., Results. The sky coverage of Euclid lies entirely within the CSST footprint. The combination of Euclid with the CSST data can thus be done more uniformly than with the various ground-based data that are part of the Euclid survey. Our studies show that by combining Euclid and CSST, we can reach a photo-z precision of sigma(NMAD)0.04 and an outlier fraction of eta 2.4% at the nominal depth of the Euclid Wide Survey (VIS24.5 AB mag). For CSST, including the Euclid Y,& 2006;J,& 2006;H bands reduces the overall photo-z outlier fraction from similar to 8.5% to 2.4%. For z & 2004;>& 2004;1, the improvements are even more significant. Because of the similarly high resolutions, the data combination of Euclid and CSST can be relatively straightforward for photometry measurements. On the other hand, to include ground-based data, sophisticated deblending utilizing priors from high-resolution space observations are required. The multi-band data from CSST are very helpful in controlling the chromatic PSF effect for Euclid VIS shear measurements. The color-gradient bias for Euclid galaxies with different bulge-to-total flux ratio at different redshifts can be well calibrated to the level of 0.1% using galaxies from the CSST deep survey.
- Published
- 2023
- Full Text
- View/download PDF