Ahmad, Aftab, Zia-Ur-Rehman, Muhammad, Hameed, Usman, Rao, Abdul Qayyum, Ahad, Ammara, Yasmeen, Aneela, Akram, Faheem, Bajwa, Kamran Shahzad, Scheffler, Jodi, Nasir, Idrees Ahmad, Shahid, Ahmad Ali, Iqbal, Muhammad Javed, Husnain, Tayyab, Haider, Muhammad Saleem, and Brown, Judith K.
Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and the bC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB). The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, Vb, was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T1 plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible) test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistant plants. [ABSTRACT FROM AUTHOR]