1. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521.
- Author
-
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shen G, Nadtochenko VA, Bryant DA, Semenov AY, and Golbeck JH
- Subjects
- Chlorophyll metabolism, Spectrometry, Fluorescence, Chlorophyll analogs & derivatives, Cyanobacteria metabolism, Cyanobacteria radiation effects, Light, Light-Harvesting Protein Complexes metabolism, Photosystem I Protein Complex metabolism
- Abstract
The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P
700 ), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al. (2019) Biochim. Biophys. Acta 1860, 452-460) contain Chl f in the positions Chl2A/Chl2B. We tested this proposal by exciting RCs from white-light grown (WL-PSI) and far-red light grown (FRL-PSI) F. thermalis PCC 7521 with femtosecond pulses and analyzing the optical dynamics. If Chl f were in the position Chl2A/Chl2B in FRL-PSI, excitation at 740 nm should have produced the charge-separated state P700 + A0 - followed by electron transfer to A1 with a τ of ≤25 ps. Instead, it takes ~230 ps for the charge-separated state to develop because the excitation migrates uphill from Chl f in the antenna to the trapping center. Further, we observe a strong electrochromic shift at 685 nm in the final P700 + A1 - spectrum that can only be explained if Chl a is in the positions Chl2A/Chl2B. Similar arguments rule out the presence of Chl f in the positions Chl3A/Chl3B; hence, Chl f is likely to function solely as an antenna pigment in FRL-PSI. We additionally report the presence of an excitonically coupled homo- or heterodimer of Chl f absorbing around 790 nm that is kinetically independent of the Chl f population that absorbs around 740 nm., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF