1. Coagulation factor XII regulates inflammatory responses in human lungs.
- Author
-
Hess R, Wujak L, Hesse C, Sewald K, Jonigk D, Warnecke G, Fieguth HG, de Maat S, Maas C, Bonella F, Preissner KT, Weiss B, Schaefer L, Kuebler WM, Markart P, and Wygrecka M
- Subjects
- Adult, Bronchoalveolar Lavage Fluid chemistry, Cytokines genetics, Female, Humans, Lung immunology, Male, Middle Aged, Pneumonia blood, Pneumonia genetics, Pneumonia immunology, Respiratory Distress Syndrome blood, Respiratory Distress Syndrome genetics, Respiratory Distress Syndrome immunology, Retrospective Studies, Signal Transduction, Young Adult, Blood Coagulation, Cytokines metabolism, Factor XII metabolism, Inflammation Mediators metabolism, Lung metabolism, Pneumonia metabolism, Respiratory Distress Syndrome metabolism
- Abstract
Increased procoagulant activity in the alveolar compartment and uncontrolled inflammation are hallmarks of the acute respiratory distress syndrome (ARDS). Here, we investigated whether the contact phase system of coagulation is activated and may regulate inflammatory responses in human lungs. Components of the contact phase system were characterized in bronchoalveolar lavage fluids (BALF) from 54 ARDS patients and 43 controls, and their impact on cytokine/chemokine expression in human precision cut lung slices (PCLS) was assessed by a PCR array. Activation of the contact system, associated with high levels of coagulation factor XIIa (Hageman factor, FXIIa), plasma kallikrein and bradykinin, occurred rapidly in ARDS lungs after the onset of the disease and virtually normalized within one week from time of diagnosis. FXII levels in BALF were higher in ARDS non-survivors than survivors and were positively correlated with tumor necrosis factor (TNF)-α concentration. FXII induced the production and release of interleukin (IL)-8, IL-1β, IL-6, leukemia inhibitory factor (LIF), CXCL5 and TNF-α in human PCLS in a kallikrein-kinin-independent manner. In conclusion, accumulation of FXII in ARDS lungs may contribute to the release of pro-inflammatory mediators and is associated with clinical outcome. FXII inhibition may thus offer a novel and promising therapeutic approach to antagonize overwhelming inflammatory responses in ARDS lungs without interfering with vital haemostasis.
- Published
- 2017
- Full Text
- View/download PDF