1. Specific detection of fission yeast primary septum reveals septum and cleavage furrow ingression during early anaphase independent of mitosis completion.
- Author
-
G Cortés JC, Ramos M, Konomi M, Barragán I, Moreno MB, Alcaide-Gavilán M, Moreno S, Osumi M, Pérez P, and Ribas JC
- Subjects
- Benzenesulfonates chemistry, CDC2 Protein Kinase physiology, Cell Nucleus physiology, Microscopy, Electron, Transmission, Microscopy, Fluorescence methods, Protein Kinases physiology, Schizosaccharomyces ultrastructure, Spindle Apparatus ultrastructure, Telophase physiology, Time Factors, rho GTP-Binding Proteins physiology, Anaphase physiology, Cell Cycle Proteins physiology, Cytokinesis physiology, Schizosaccharomyces physiology, Schizosaccharomyces pombe Proteins physiology, Spindle Apparatus physiology
- Abstract
It is widely accepted in eukaryotes that the cleavage furrow only initiates after mitosis completion. In fission yeast, cytokinesis requires the synthesis of a septum tightly coupled to cleavage furrow ingression. The current cytokinesis model establishes that simultaneous septation and furrow ingression only initiate after spindle breakage and mitosis exit. Thus, this model considers that although Cdk1 is inactivated at early-anaphase, septation onset requires the long elapsed time until mitosis completion and full activation of the Hippo-like SIN pathway. Here, we studied the precise timing of septation onset regarding mitosis by exploiting both the septum-specific detection with the fluorochrome calcofluor and the high-resolution electron microscopy during anaphase and telophase. Contrarily to the existing model, we found that both septum and cleavage furrow start to ingress at early anaphase B, long before spindle breakage, with a slow ingression rate during anaphase B, and greatly increasing after telophase onset. This shows that mitosis and cleavage furrow ingression are not concatenated but simultaneous events in fission yeast. We found that the timing of septation during early anaphase correlates with the cell size and is regulated by the corresponding levels of SIN Etd1 and Rho1. Cdk1 inactivation was directly required for timely septation in early anaphase. Strikingly the reduced SIN activity present after Cdk1 loss was enough to trigger septation by immediately inducing the medial recruitment of the SIN kinase complex Sid2-Mob1. On the other hand, septation onset did not depend on the SIN asymmetry establishment, which is considered a hallmark for SIN activation. These results recalibrate the timing of key cytokinetic events in fission yeast; and unveil a size-dependent control mechanism that synchronizes simultaneous nuclei separation with septum and cleavage furrow ingression to safeguard the proper chromosome segregation during cell division., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF