1. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection.
- Author
-
Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, LeTourneau DL, McMillian CL, Contag PR, Jenkins DE, and Parr TR Jr
- Subjects
- Animals, Anti-Bacterial Agents therapeutic use, Anti-Infective Agents therapeutic use, Ceftazidime therapeutic use, Cell Count, Cephalosporins therapeutic use, Ciprofloxacin therapeutic use, DNA, Bacterial chemistry, DNA, Bacterial genetics, Escherichia coli drug effects, Escherichia coli genetics, Escherichia coli Infections drug therapy, Luminescent Measurements, Male, Mice, Mice, Inbred ICR, Microbial Sensitivity Tests, Tetracycline therapeutic use, Diagnostic Imaging methods, Escherichia coli metabolism, Escherichia coli Infections microbiology, Muscular Diseases microbiology, Neutropenia microbiology
- Abstract
A noninvasive, real-time detection technology was validated for qualitative and quantitative antimicrobial treatment applications. The lux gene cluster of Photorhabdus luminescens was introduced into an Escherichia coli clinical isolate, EC14, on a multicopy plasmid. This bioluminescent reporter bacterium was used to study antimicrobial effects in vitro and in vivo, using the neutropenic-mouse thigh model of infection. Bioluminescence was monitored and measured in vitro and in vivo with an intensified charge-coupled device (ICCD) camera system, and these results were compared to viable-cell determinations made using conventional plate counting methods. Statistical analysis demonstrated that in the presence or absence of antimicrobial agents (ceftazidime, tetracycline, or ciprofloxacin), a strong correlation existed between bioluminescence levels and viable cell counts in vitro and in vivo. Evaluation of antimicrobial agents in vivo could be reliably performed with either method, as each was a sound indicator of therapeutic success. Dose-dependent responses could also be detected in the neutropenic-mouse thigh model by using either bioluminescence or viable-cell counts as a marker. In addition, the ICCD technology was examined for the benefits of repeatedly monitoring the same animal during treatment studies. The ability to repeatedly measure the same animals reduced variability within the treatment experiments and allowed equal or greater confidence in determining treatment efficacy. This technology could reduce the number of animals used during such studies and has applications for the evaluation of test compounds during drug discovery.
- Published
- 2001
- Full Text
- View/download PDF