1. Brain-Computer Interface Design for Asynchronous Control Applications: Improvements to the LF-ASD Asynchronous Brain Switch.
- Author
-
Borisoff, Jaimie F., Mason, Steve G., Bashashati, Ali, and Birch, Gary E.
- Subjects
- *
COMPUTER interfaces , *DIGITAL signal processing , *NEUROSCIENCES , *BIOMEDICAL engineering , *BRAIN , *RADIOGRAPHY , *ASYNCHRONOUS transfer mode - Abstract
The low-frequency asynchronous switch design (LF-ASD) was introduced as a direct brain-computer interface (BCI) technology for asynchronous control applications. The LF-ASD operates as an asynchronous brain switch (ABS) which is activated only when a user intends control and maintains an inactive state output when the user is not meaning to control the device (i.e., they may be idle, thinking about a problem, or performing some other action). Results from LF-ASD evaluations have shown promise, although the reported error rates are too high for most practical applications. This paper presents the evaluation of four new LF-ASD designs with data collected from individuals with high-level spinal cord injuries and able-bodied subjects. These new designs incorporated electroencephalographic energy normalization and feature space dimensionality reduction. The error characteristics of the new ABS designs were significantly better than the LF-ASD design with true positive rate increases of approximately 33% for false positive rates in the range of 1%-2%. The results demonstrate that the dimensionality of the LF-ASD feature space can be reduced without performance degradation. The results also confirm previous findings that spinal cord-injured subjects can operate ABS designs to the same ability as able-bodied subjects. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF