1. Estimation for Location-Scale Models with Censored Data.
- Author
-
Lu, Xuewen, Singh, R.S., and Desmond, A.F.
- Subjects
ESTIMATION theory ,MATHEMATICAL statistics ,STOCHASTIC processes ,MATHEMATICS ,DISTRIBUTION (Probability theory) - Abstract
This article considers a class of estimators for the location and scale parameters in the location-scale model based on 'synthetic data' when the observations are randomly censored on the right. The asymptotic normality of the estimators is established using counting process and martingale techniques when the censoring distribution is known and unknown, respectively. In the case when the censoring distribution is known, we show that the asymptotic variances of this class of estimators depend on the data transformation and have a lower bound which is not achievable by this class of estimators. However, in the case that the censoring distribution is unknown and estimated by the Kaplan-Meier estimator, this class of estimators has the same asymptotic variance and attains the lower bound for variance for the case of known censoring distribution. This is different from censored regression analysis, where asymptotic variances depend on the data transformation. Our method has three valuable advantages over the method of maximum likelihood estimation. First, our estimators are available in a closed form and do not require an iterative algorithm. Second, simulation studies show that our estimators being moment-based are comparable to maximum likelihood estimators and outperform them when sample size is small and censoring rate is high. Third, our estimators are more robust to model misspecification than maximum likelihood estimators. Therefore, our method can serve as a competitive alternative to the method of maximum likelihood in estimation for location-scale models with censored data. A numerical example is presented to illustrate the proposed method. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF