1. Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications.
- Author
-
Akhavan Farid E, Davachi SM, Pezeshki-Modaress M, Taranejoo S, Seyfi J, Hejazi I, Tabatabaei Hakim M, Najafi F, D'Amico C, and Abbaspourrad A
- Subjects
- Capsules, Delayed-Action Preparations, Hydrogen-Ion Concentration, Temperature, Drug Carriers chemistry, Gelatin chemistry, Insulin chemistry, Methacrylates chemistry, Nanoparticles chemistry, Polylactic Acid-Polyglycolic Acid Copolymer chemistry
- Abstract
This study aimed to examine the possibility of using insulin orally with gelatin encapsulation to enhance the usefulness of the drug and increase the lifespan of insulin in the body using polylactic-co-glycolic acid (PLGA) nanoparticles alongside gelatin encapsulation. In this regard, PLGA was synthesized via ring opening polymerization, and PLGA/insulin nanoparticles were prepared by a modified emulsification-diffusion process. The resulting nanoparticles with various amounts of insulin were fully characterized using FTIR, DSC, DLS, zeta potential, SEM, and glucose uptake methods, with results indicating the interaction between the insulin and PLGA. The process efficiency of encapsulation was higher than 92%, while the encapsulation efficiency of nanoparticles, based on an insulin content of 20 to 40%, was optimized at 93%. According to the thermal studies, the PLGA encapsulation increases the thermal stability of the insulin. The morphological studies showed the fine dispersion of insulin in the PLGA matrix, which we further confirmed by the Kjeldahl method. According to the release studies and kinetics, in-vitro degradation, and particle size analysis, the sample loaded with 30% insulin showed optimum overall properties, and thus it was encapsulated with gelatin followed by coating with aqueous methacrylate coating. Release studies at pH values of 3 and 7.4, alongside the Kjeldahl method and standard dissolution test at pH 5.5, and glucose uptake assay tests clearly showed the capsules featured 3-4 h biodegradation resistance at a lower pH along with the sustained release, making these gelatin-encapsulated nanoparticles promising alternatives for oral applications.[Figure: see text].
- Published
- 2020
- Full Text
- View/download PDF