1. Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey.
- Author
-
Özdemir R and Tuncer Y
- Subjects
- Animals, Bacterial Proteins metabolism, Enterococcus classification, Enterococcus metabolism, Gentamicins pharmacology, Humans, Kanamycin Kinase genetics, Kanamycin Kinase metabolism, Microbial Sensitivity Tests methods, Streptomycin pharmacology, Teicoplanin pharmacology, Turkey, Aminoglycosides pharmacology, Bacterial Proteins genetics, Cheese microbiology, Drug Resistance, Bacterial genetics, Drug Resistance, Multiple, Bacterial genetics, Enterococcus genetics, Milk microbiology
- Abstract
The aim of this study was isolation and identification of the high-level aminoglycoside-resistant (HLAR) enterococci in raw milk and dairy products and to analyze their antibiotic resistance and the presence of aminoglycoside-modifying enzyme (AME) genes. A total of 59 HLAR enterococci were isolated from raw milk and traditional cheese samples. Thirty-nine of the 59 HLAR enterococci were isolated on streptomycin-containing agar medium, while the other 20 HLAR strains were isolated on gentamicin containing agar medium. The 59 HLAR enterococci were identified as 26 E. faecalis (44.07%), 18 E. faecium (30.51%), 13 E. durans (22.03%), and two E. gallinarum (3.39%) by species-specific PCR. Disk diffusion tests showed that teicoplanin were the most effective antibiotics used in this study, while 89.83% of isolates were found to be resistant to tetracycline. High rates of multiple antibiotic resistance were detected in HLAR isolates. Minimum inhibitory concentration (MIC) values of HLAR enterococci against streptomycin and gentamicin were found in the range of 64 to > 4096 µg/mL. Forty-seven (79.66%) of the 59 HLAR enterococci were found to be both high-level streptomycin-resistant (HLSR) and high-level gentamicin-resistant (HLGR) by MIC tests. However, no correlation was found between the results of the disk diffusion and MIC tests for gentamicin and streptomycin in some HLAR strains. The aph(3')-IIIa (94.92%) was found to be most prevalent AME gene followed by ant(4')-Ia (45.76%), ant(6')-Ia (20.34%) and aph(2'')-Ic (10.17%). None of the isolates contained the aac(6')-Ie-aph(2'')-Ia, aph(2'')-Ib or aph(2'')-Id genes. None of the AME-encoding genes were identified in E. durans RG20.1, E. faecalis RG22.4, or RG26.1. In conclusion, HLAR enterococci strains isolated in this study may act as reservoirs in the dissemination of antibiotic resistance genes.
- Published
- 2020
- Full Text
- View/download PDF