1. High Tide or Riptide on the Cosmic Shoreline? A Water-Rich Atmosphere or Stellar Contamination for the Warm Super-Earth GJ~486b from JWST Observations
- Author
-
Sarah E. Moran, Kevin B. Stevenson, David K. Sing, Ryan J. MacDonald, James Kirk, Jacob Lustig-Yaeger, Sarah Peacock, L. C. Mayorga, Katherine A. Bennett, Mercedes López-Morales, E. M. May, Zafar Rustamkulov, Jeff A. Valenti, Jéa I. Adams Redai, Munazza K. Alam, Natasha E. Batalha, Guangwei Fu, Junellie Gonzalez-Quiles, Alicia N. Highland, Ethan Kruse, Joshua D. Lothringer, Kevin N. Ortiz Ceballos, Kristin S. Sotzen, and Hannah R. Wakeford
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Planets orbiting M-dwarf stars are prime targets in the search for rocky exoplanet atmospheres. The small size of M dwarfs renders their planets exceptional targets for transmission spectroscopy, facilitating atmospheric characterization. However, it remains unknown whether their host stars' highly variable extreme-UV radiation environments allow atmospheres to persist. With JWST, we have begun to determine whether or not the most favorable rocky worlds orbiting M dwarfs have detectable atmospheres. Here, we present a 2.8-5.2 micron JWST NIRSpec/G395H transmission spectrum of the warm (700 K, 40.3x Earth's insolation) super-Earth GJ 486b (1.3 R$_{\oplus}$ and 3.0 M$_{\oplus}$). The measured spectrum from our two transits of GJ 486b deviates from a flat line at 2.2 - 3.3 $\sigma$, based on three independent reductions. Through a combination of forward and retrieval models, we determine that GJ 486b either has a water-rich atmosphere (with the most stringent constraint on the retrieved water abundance of H2O > 10% to 2$\sigma$) or the transmission spectrum is contaminated by water present in cool unocculted starspots. We also find that the measured stellar spectrum is best fit by a stellar model with cool starspots and hot faculae. While both retrieval scenarios provide equal quality fits ($\chi^2_\nu$ = 1.0) to our NIRSpec/G395H observations, shorter wavelength observations can break this degeneracy and reveal if GJ 486b sustains a water-rich atmosphere., Comment: 18 pages, 7 figures, 5 tables. Accepted in ApJ Letters. Co-First Authors
- Published
- 2023