7 results on '"Dunne JA"'
Search Results
2. Fundamental ecology is fundamental.
- Author
-
Courchamp F, Dunne JA, Le Maho Y, May RM, Thébaud C, and Hochberg ME
- Subjects
- Research Design, Ecology economics, Research economics
- Abstract
The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences., (Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
3. Simple prediction of interaction strengths in complex food webs.
- Author
-
Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, and Brose U
- Subjects
- Animals, Biomass, Body Size, Extinction, Biological, Feeding Behavior, Models, Theoretical, Ecology, Food Chain, Population Dynamics
- Abstract
Darwin's classic image of an "entangled bank" of interdependencies among species has long suggested that it is difficult to predict how the loss of one species affects the abundance of others. We show that for dynamical models of realistically structured ecological networks in which pair-wise consumer-resource interactions allometrically scale to the (3/4) power--as suggested by metabolic theory--the effect of losing one species on another can be predicted well by simple functions of variables easily observed in nature. By systematically removing individual species from 600 networks ranging from 10-30 species, we analyzed how the strength of 254,032 possible pair-wise species interactions depended on 90 stochastically varied species, link, and network attributes. We found that the interaction strength between a pair of species is predicted well by simple functions of the two species' biomasses and the body mass of the species removed. On average, prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths. Applied to field data, our model successfully predicts interactions dominated by trophic effects and illuminates the sign and magnitude of important nontrophic interactions.
- Published
- 2009
- Full Text
- View/download PDF
4. Two degrees of separation in complex food webs.
- Author
-
Williams RJ, Berlow EL, Dunne JA, Barabási AL, and Martinez ND
- Subjects
- Animals, Ecosystem, Species Specificity, Ecology, Feeding Behavior, Food Chain
- Abstract
Feeding relationships can cause invasions, extirpations, and population fluctuations of a species to dramatically affect other species within a variety of natural habitats. Empirical evidence suggests that such strong effects rarely propagate through food webs more than three links away from the initial perturbation. However, the size of these spheres of potential influence within complex communities is generally unknown. Here, we show for that species within large communities from a variety of aquatic and terrestrial ecosystems are on average two links apart, with >95% of species typically within three links of each other. Species are drawn even closer as network complexity and, more unexpectedly, species richness increase. Our findings are based on seven of the largest and most complex food webs available as well as a food-web model that extends the generality of the empirical results. These results indicate that the dynamics of species within ecosystems may be more highly interconnected and that biodiversity loss and species invasions may affect more species than previously thought.
- Published
- 2002
- Full Text
- View/download PDF
5. Food-web structure and network theory: The role of connectance and size.
- Author
-
Dunne JA, Williams RJ, and Martinez ND
- Subjects
- Ecosystem, Models, Theoretical, Species Specificity, Statistics as Topic, Ecology, Feeding Behavior, Food Chain
- Abstract
Networks from a wide range of physical, biological, and social systems have been recently described as "small-world" and "scale-free." However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25-172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power-law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks.
- Published
- 2002
- Full Text
- View/download PDF
6. Ecogeographical rules and the macroecology of food webs
- Author
-
Baiser, B, Gravel, D, Cirtwill, AR, Dunne, JA, Fahimipour, AK, Gilarranz, LJ, Grochow, JA, Li, D, Martinez, ND, McGrew, A, Poisot, T, Romanuk, TN, Stouffer, DB, Trotta, LB, Valdovinos, FS, Williams, RJ, Wood, SA, and Yeakel, JD
- Subjects
Bergmann's rule ,ecogeographical rules ,ecological networks ,food webs ,island rule ,latitudinal diversity gradient ,macroecology ,Rapoport's rule ,Ecology ,Physical Geography and Environmental Geoscience ,Ecological Applications - Abstract
Aim: How do factors such as space, time, climate and other ecological drivers influence food web structure and dynamics? Collections of well-studied food webs and replicate food webs from the same system that span biogeographical and ecological gradients now enable detailed, quantitative investigation of such questions and help integrate food web ecology and macroecology. Here, we integrate macroecology and food web ecology by focusing on how ecogeographical rules [the latitudinal diversity gradient (LDG), Bergmann's rule, the island rule and Rapoport's rule] are associated with the architecture of food webs. Location: Global. Time period: Current. Major taxa studied: All taxa. Methods: We discuss the implications of each ecogeographical rule for food webs, present predictions for how food web structure will vary with each rule, assess empirical support where available, and discuss how food webs may influence ecogeographical rules. Finally, we recommend systems and approaches for further advancing this research agenda. Results: We derived testable predictions for some ecogeographical rules (e.g. LDG, Rapoport's rule), while for others (e.g., Bergmann's and island rules) it is less clear how we would expect food webs to change over macroecological scales. Based on the LDG, we found weak support for both positive and negative relationships between food chain length and latitude and for increased generality and linkage density at higher latitudes. Based on Rapoport's rule, we found support for the prediction that species turnover in food webs is inversely related to latitude. Main conclusions: The macroecology of food webs goes beyond traditional approaches to biodiversity at macroecological scales by focusing on trophic interactions among species. The collection of food web data for different types of ecosystems across biogeographical gradients is key to advance this research agenda. Further, considering food web interactions as a selection pressure that drives or disrupts ecogeographical rules has the potential to address both mechanisms of and deviations from these macroecological relationships. For these reasons, further integration of macroecology and food webs will help ecologists better understand the assembly, maintenance and change of ecosystems across space and time.
- Published
- 2019
7. Complexity in ecology and conservation: Mathematical, statistical, and computational challenges
- Author
-
Green, JL, Hastings, A, Arzberger, P, Ayala, FJ, Cottingham, KL, Cuddington, K, Davis, F, Dunne, JA, Fortin, MJ, Gerber, L, and Neubert, M
- Subjects
ecological complexity ,quantitative conservation biology ,cyberinfrastructure ,metadata ,Semantic Web ,Bioengineering ,Networking and Information Technology R&D ,1.4 Methodologies and measurements ,Generic Health Relevance ,Ecology ,Environmental Sciences ,Biological Sciences - Abstract
Creative approaches at the interface of ecology, statistics, mathematics, informatics, and computational science are essential for improving our understanding of complex ecological systems. For example, new information technologies, including powerful computers, spatially embedded sensor networks, and Semantic Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These technologies can play an important role in developing and testing detailed models that describe real-world systems at multiple scales. Key challenges include choosing the appropriate level of model complexity necessary for understanding biological patterns across space and time, and applying this understanding to solve problems in conservation biology and resource management. Meeting these challenges requires novel statistical and mathematical techniques for distinguishing among alternative ecological theories and hypotheses. Examples from a wide array of research areas in population biology and community ecology highlight the importance of fostering synergistic ties across disciplines for current and future research and application. © 2005 American Institute of Biological Sciences.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.