1. Integrals of life: Tracking ecosystem spatial heterogeneity from space through the area under the curve of the parametric Rao’s Q index
- Author
-
Thouverai, Elisa, Marcantonio, Matteo, Lenoir, Jonathan, Galfré, Mariasole, Marchetto, Elisa, Bacaro, Giovanni, Cazzolla Gatti, Roberto, Da Re, Daniele, Di Musciano, Michele, Furrer, Reinhard, Malavasi, Marco, Moudrý, Vítězslav, Nowosad, Jakub, Pedrotti, Franco, Pelorosso, Raffaele, Pezzi, Giovanna, Šímová, Petra, Ricotta, Carlo, Silvestri, Sonia, Tordoni, Enrico, Torresani, Michele, Vacchiano, Giorgio, Zannini, Piero, Rocchini, Duccio, Thouverai, E., Marcantonio, M., Lenoir, J., Galfré, M., Marchetto, E., Bacaro, G., Cazzolla Gatti, R., Da Re, D., Di Musciano, M., Furrer, R., Malavasi, M., Moudrý, V., Nowosad, J., Pedrotti, F., Pelorosso, R., Pezzi, G., Šímová, P., Ricotta, C., Silvestri, S., Tordoni, E., Torresani, M., Vacchiano, G., Zannini, P., Rocchini, D., Thouverai E., Marcantonio M., Lenoir J., Galfre M., Marchetto E., Bacaro G., Cazzolla Gatti R., Da Re D., Di Musciano M., Furrer R., Malavasi M., Moudry V., Nowosad J., Pedrotti F., Pelorosso R., Pezzi G., Simova P., Ricotta C., Silvestri S., Tordoni E., Torresani M., Vacchiano G., Zannini P., Rocchini D., University of Zurich, and Thouverai, Elisa
- Subjects
Biodiversity ,Ecological informatics ,Modelling ,Remote sensing ,Satellite imagery ,Ecology ,530 Physics ,Evolution ,Ecological Modeling ,Ecological informatic ,Behavior and Systematics Biodiversity ,10123 Institute of Mathematics ,1105 Ecology, Evolution, Behavior and Systematics ,2302 Ecological Modeling ,10231 Institute for Computational Science ,Ecology, Evolution, Behavior and Systematics - Abstract
Spatio-ecological heterogeneity is strongly linked to many ecological processes and functions such as plant species diversity patterns and change, metapopulation dynamics, and gene flow. Remote sensing is particularly useful for measuring spatial heterogeneity of ecosystems over wide regions with repeated measurements in space and time. Besides, developing free and open source algorithms for ecological modelling from space is vital to allow to prove workflows of analysis reproducible. From this point of view, NASA developed programs like the Surface Biology and Geology (SBG) to support the development of algorithms for exploiting spaceborne remotely sensed data to provide a relatively fast but accurate estimate of ecological properties in vast areas over time. Most of the indices to measure heterogeneity from space are point descriptors : they catch only part of the whole heterogeneity spectrum. Under the SBG umbrella, in this paper we provide a new R function part of therasterdivR package which allows to calculate spatio-ecological heterogeneity and its variation over time by considering all its possible facets. The new function was tested on two different case studies, on multi- and hyperspectral images, proving to be an effective tool to measure heterogeneity and detect its changes over time.
- Published
- 2022