1. Portfolio rebalancing based on time series momentum and downside risk
- Author
-
Sarah M. Ryan and Xiaoshi Guo
- Subjects
CVAR ,Applied Mathematics ,Strategy and Management ,Financial risk ,Risk parity ,Downside risk ,Asset allocation ,Risk–return spectrum ,Management Science and Operations Research ,Management Information Systems ,Momentum (finance) ,Modeling and Simulation ,Economics ,Econometrics ,Portfolio ,General Economics, Econometrics and Finance - Abstract
To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.
- Published
- 2021
- Full Text
- View/download PDF