16 results on '"Lecomte, Nicolas"'
Search Results
2. ArcticBirdSounds: An open-access, multiyear, and detailed annotated dataset of bird songs and calls.
- Author
-
Christin S, Chicoine C, O'Neill Sanger T, Guigueno MF, Hansen J, Lanctot RB, MacNearney D, Rausch J, Saalfeld ST, Schmidt NM, Smith PA, Woodard PF, Hervet É, and Lecomte N
- Subjects
- Animals, Arctic Regions, Alaska, Biodiversity, Ecosystem, Birds
- Abstract
Tracking biodiversity shifts is central to understanding past, present, and future global changes. Recent advances in bioacoustics and the low cost of high-quality automatic recorders are revolutionizing studies in biogeography and community and behavioral ecology with a robust assessment of phenology, species occurrence, and individual activity. This large volume of acoustic recordings has recently generated a plethora of datasets that can now be handled automatically, mostly via big data methods such as deep learning. These approaches need high-quality annotations to classify and detect recorded sounds efficiently. However, very few strongly annotated datasets-that is, with detailed information on start and end time of each vocalization-are openly accessible to the public. Moreover, these datasets mostly cover temperate species and are usually limited to a single year of recordings. Here, we present ArcticBirdSounds, the first open-access, multisite, and multiyear strongly annotated dataset of arctic bird vocalizations. ArcticBirdSounds offers 20 h of annotated recordings over 2 years (2018, 2019), taken from 15 distinct plots within six locations across the Arctic, from Alaska to Greenland. Recordings cover the arctic vertebrates' breeding period and are evenly spaced during the day; they capture most species breeding there with 12,933 temporal annotations in 49 classes of sounds. While these data can be used for many pressing ecological questions, it is also a unique resource for methodological development to help meet the challenges of fast ecosystem transformations such as those happening in the Arctic. All data, including audio files, annotation files, and companion spreadsheets, are available in an Open Science Framework repository published under a CC BY 4.0 License., (© 2023 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
3. Ecology of Arctic rabies: 60 years of disease surveillance in the warming climate of northern Canada.
- Author
-
Simon A, Beauchamp G, Bélanger D, Bouchard C, Fehlner-Gardiner C, Lecomte N, Rees E, and Leighton PA
- Subjects
- Animals, Arctic Regions epidemiology, Canada epidemiology, Humans, Population Surveillance, Rabies epidemiology, Climate Change, Ecosystem, Foxes, Rabies veterinary
- Abstract
Rabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio-temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio-temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
4. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve.
- Author
-
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, and Ylönen H
- Subjects
- Animals, Arvicolinae, Disease Outbreaks, Population Dynamics, Ecosystem, Rodentia
- Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
- Published
- 2021
- Full Text
- View/download PDF
5. Parasitoids indicate major climate-induced shifts in arctic communities.
- Author
-
Kankaanpää T, Vesterinen E, Hardwick B, Schmidt NM, Andersson T, Aspholm PE, Barrio IC, Beckers N, Bêty J, Birkemoe T, DeSiervo M, Drotos KHI, Ehrich D, Gilg O, Gilg V, Hein N, Høye TT, Jakobsen KM, Jodouin C, Jorna J, Kozlov MV, Kresse JC, Leandri-Breton DJ, Lecomte N, Loonen M, Marr P, Monckton SK, Olsen M, Otis JA, Pyle M, Roos RE, Raundrup K, Rozhkova D, Sabard B, Sokolov A, Sokolova N, Solecki AM, Urbanowicz C, Villeneuve C, Vyguzova E, Zverev V, and Roslin T
- Subjects
- Animals, Arctic Regions, Greenland, Host-Parasite Interactions, Larva, Ecosystem, Herbivory
- Abstract
Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort., (© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
6. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra.
- Author
-
Juhasz CC, Shipley B, Gauthier G, Berteaux D, and Lecomte N
- Subjects
- Animals, Arctic Regions, Arvicolinae, Food Chain, Population Dynamics, Ecosystem, Tundra
- Abstract
Climate change can impact ecosystems by reshaping the dynamics of resource exploitation for predators and their prey. Alterations of these pathways could be especially intense in ecosystems characterized by a simple trophic structure and rapid warming trends, such as in the Arctic. However, quantifying the multiple direct and indirect pathways through which climate change is likely to alter trophic interactions and their relative strength remains a challenge. Here, we aim to identify direct and indirect causal mechanisms driven by climate affecting predator-prey interactions of species sharing a tundra food web. We based our study on relationships between one Arctic predator (Arctic fox) and its two main prey - lemmings (preferred prey) and snow geese (alternate prey) - which are exposed to variable local and regional climatic factors across years. We used a combination of models mapping multiple causal links among key variables derived from a long-term dataset (21 years). We obtained several possible scenarios linking regional climate factors (Arctic oscillations) and local temperature and precipitation to the breeding of species. Our results suggest that both regional and local climate factors have direct and indirect impacts on the breeding of foxes and geese. Local climate showed a positive causal link with goose nesting success, while both regional and local climate displayed contrasted effects on the proportion of fox breeding. We found no impact of climate on lemming abundance. We observed positive relationships between lemming, fox and goose reproduction highlighting numerical and functional responses of fox to the variability of lemming abundance. Our study measures causal links and strength of interactions in a food web, quantifying both numerical response of a predator and apparent interactions between its two main prey. These results improve our understanding of the complex effects of climate on predator-prey interactions and our capacity to anticipate food web response to ongoing climate change., (© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society.)
- Published
- 2020
- Full Text
- View/download PDF
7. Documenting lemming population change in the Arctic: Can we detect trends?
- Author
-
Ehrich D, Schmidt NM, Gauthier G, Alisauskas R, Angerbjörn A, Clark K, Ecke F, Eide NE, Framstad E, Frandsen J, Franke A, Gilg O, Giroux MA, Henttonen H, Hörnfeldt B, Ims RA, Kataev GD, Kharitonov SP, Killengreen ST, Krebs CJ, Lanctot RB, Lecomte N, Menyushina IE, Morris DW, Morrisson G, Oksanen L, Oksanen T, Olofsson J, Pokrovsky IG, Popov IY, Reid D, Roth JD, Saalfeld ST, Samelius G, Sittler B, Sleptsov SM, Smith PA, Sokolov AA, Sokolova NA, Soloviev MY, and Solovyeva DV
- Subjects
- Animals, Arctic Regions, Canada, Population Dynamics, Russia, Arvicolinae, Ecosystem
- Abstract
Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.
- Published
- 2020
- Full Text
- View/download PDF
8. Disentangling the relative influences of global drivers of change in biodiversity: A study of the twentieth-century red fox expansion into the Canadian Arctic.
- Author
-
Gallant D, Lecomte N, and Berteaux D
- Subjects
- Animals, Arctic Regions, Biodiversity, Canada, Humans, Ecosystem, Foxes
- Abstract
The poleward range shift of the red fox (Vulpes vulpes) > 1,700 km into the Arctic is one of the most remarkable distribution changes of the early twentieth century. While this expansion threatens a smaller arctic ecological equivalent, the arctic fox (Vulpes lagopus), the case became a textbook example of climate-driven range shifts. We tested this classical climate change hypothesis linked to an important range shift which has attracted little research thus far. We analysed Canadian fur harvest data from the Hudson's Bay Company Archives (14 trading posts; 1926-1950), testing hypotheses based on changes in summer and winter climates. Summer warming might have triggered a bottom-up increase in ecosystem productivity, while winter warming might have lowered thermal stress, both favouring red fox expansion. Additionally, we evaluated the hypothesis that red fox expansion was driven by the appearance of human sedentary sites (n = 110) likely bringing food subsidies into the unproductive tundra. Analysis of red fox expansion chronologies showed that expansion speed was higher during warmer winters. However, the expansions occurred under both cooling and warming trends, being faster during cooler summers in the Baffin Island region. The increasing proportion of red fox in fox fur harvests was best explained by human activity, while generalized linear mixed models also revealed a marginal effect of warmer winters. Generalized additive models confirmed human presence as the most important factor explaining rates of change in the proportion of red fox in fox fur harvests. Using historical ecology, we disentangled the relative influences of climate change and anthropogenic habitat change, two global drivers that transformed arctic biodiversity during the last century and will likely continue to do so during this century. Anthropogenic food subsidies, which constitute stable food sources, facilitated the invasion of the tundra biome by a new mammalian predator and competitor, with long-term consequences that still remain to be understood., (© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society.)
- Published
- 2020
- Full Text
- View/download PDF
9. The strength of ecological subsidies across ecosystems: a latitudinal gradient of direct and indirect impacts on food webs.
- Author
-
Montagano L, Leroux SJ, Giroux MA, and Lecomte N
- Subjects
- Animals, Ecology, Ecosystem, Food Chain
- Abstract
Material and energy flows among ecosystems can directly and indirectly drive ecosystem functions. Yet, how populations of consumers respond to allochthonous inputs at a macroecological scale is still unclear. Using a meta-analysis spanning several biomes, we show that the abundance of recipient populations is 36-57% larger with increased allochthonous inputs. The strength of direct effects on the recipients of these inputs as well as the indirect effects on the consumers of these recipients (i.e. ascending indirect effects) are constant across a latitudinal gradient spanning subtropical, arid, temperate, boreal and arctic ecosystems. However, indirect effect on the in situ resources of the input recipient (i.e. descending indirect effects) decreases with latitude. Our results suggest that the influence of allochthonous inputs can vary across large-scale gradients of ecosystem productivity and may be driven by the types of trophic interactions within recipient food webs., (© 2018 John Wiley & Sons Ltd/CNRS.)
- Published
- 2019
- Full Text
- View/download PDF
10. Sources of variation in small rodent trophic niche: new insights from DNA metabarcoding and stable isotope analysis.
- Author
-
Soininen EM, Ehrich D, Lecomte N, Yoccoz NG, Tarroux A, Berteaux D, Gauthier G, Gielly L, Brochmann C, Gussarova G, and Ims RA
- Subjects
- Animals, Arctic Regions, Carbon Isotopes metabolism, DNA Barcoding, Taxonomic, Lichens metabolism, Mass Spectrometry, Nitrogen Isotopes metabolism, Norway, Nunavut, Russia, Viridiplantae metabolism, Arvicolinae physiology, Ecosystem, Food Chain
- Abstract
Intraspecific competition for food is expected to increase the trophic niche width of consumers, defined here as their diet diversity, but this process has been little studied in herbivores. Population densities of small rodents fluctuate greatly, providing a good study model to evaluate effects of competition on trophic niche. We studied resource use in five arctic small rodent populations of four species combining DNA metabarcoding of stomach contents and stable isotope analysis (SIA). Our results suggest that for small rodents, the most pronounced effect of competition on trophic niche is due to increased use of secondary habitats and to habitat-specific diets, rather than an expansion of trophic niche in primary habitat. DNA metabarcoding and SIA provided complementary information about the composition and temporal variation of herbivore diets. Combing these two approaches requires caution, as the underlying processes causing observed patterns may differ between methodologies due to different spatiotemporal scales.
- Published
- 2014
- Full Text
- View/download PDF
11. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.
- Author
-
Truchon MH, Measures L, L'Hérault V, Brêthes JC, Galbraith PS, Harvey M, Lessard S, Starr M, and Lecomte N
- Subjects
- Animals, Biodiversity, Geography, Ice, Linear Models, Quebec, Seasons, Time Factors, Ecosystem, Mammals physiology, Seawater
- Abstract
Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2)adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2)adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.
- Published
- 2013
- Full Text
- View/download PDF
12. The importance of willow thickets for ptarmigan and hares in shrub tundra: the more the better?
- Author
-
Ehrich D, Henden JA, Ims RA, Doronina LO, Killengren ST, Lecomte N, Pokrovsky IG, Skogstad G, Sokolov AA, Sokolov VA, and Yoccoz NG
- Subjects
- Animals, Behavior, Animal, Herbivory, Norway, Population Dynamics, Russia, Siberia, Species Specificity, Ecosystem, Galliformes, Hares, Salix
- Abstract
In patchy habitats, the relationship between animal abundance and cover of a preferred habitat may change with the availability of that habitat, resulting in a functional response in habitat use. Here, we investigate the relationship of two specialized herbivores, willow ptarmigan (Lagopus lagopus) and mountain hare (Lepus timidus), to willows (Salix spp.) in three regions of the shrub tundra zone-northern Norway, northern European Russia and western Siberia. Shrub tundra is a naturally patchy habitat where willow thickets represent a major structural element and are important for herbivores both as food and shelter. Habitat use was quantified using feces counts in a hierarchical spatial design and related to several measures of willow thicket configuration. We document a functional response in the use of willow thickets by ptarmigan, but not by hares. For hares, whose range extends into forested regions, occurrence increased overall with willow cover. The occurrence of willow ptarmigan showed a strong positive relationship to willow cover and a negative relationship to thicket fragmentation in the region with lowest willow cover at landscape scale, where willow growth may be limited by reindeer browsing. In regions with higher cover, in contrast, such relationships were not observed. Differences in predator communities among the regions may contribute to the observed pattern, enhancing the need for cover where willow thickets are scarce. Such region-specific relationships reflecting regional characteristics of the ecosystem highlight the importance of large-scale investigations to understand the relationships of habitat availability and use, which is a critical issue considering that habitat availability changes quickly with climate change and human impact.
- Published
- 2012
- Full Text
- View/download PDF
13. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.
- Author
-
Sokolov V, Ehrich D, Yoccoz NG, Sokolov A, and Lecomte N
- Subjects
- Animals, Arctic Regions, Climate Change, Humans, Birds physiology, Ecosystem
- Abstract
Background: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity., Methodology/principal Findings: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2)). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra., Conclusion/significance: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.
- Published
- 2012
- Full Text
- View/download PDF
14. A link between water availability and nesting success mediated by predator-prey interactions in the Arctic.
- Author
-
Lecomte N, Gauthier G, and Giroux JF
- Subjects
- Animals, Arctic Regions, Charadriiformes, Crows, Female, Foxes, Male, Rain, Time Factors, Water, Ecosystem, Geese physiology, Nesting Behavior physiology, Predatory Behavior physiology
- Abstract
Although water availability is primarily seen as a factor affecting food availability (a bottom-up process), we examined its effect on predator-prey interactions through an influence on prey behavior (a top-down process). We documented a link between water availability, predation risk, and reproductive success in a goose species (Chen caerulescens atlantica) inhabiting an Arctic environment where water is not considered a limited commodity. To reach water sources during incubation recesses, geese nesting in mesic tundra (low water availability) must move almost four times as far from their nest than those nesting in wetlands, which reduced their ability to defend their nest against predators and led to a higher predation rate. Nesting success was improved in high rainfall years due to increased water availability, and more so for geese nesting in the low water availability habitat. Likewise, nesting success was improved in years where the potential for evaporative water loss (measured by the atmospheric water vapor pressure) was low, presumably because females had to leave their nest less often to drink. Females from water-supplemented nests traveled a shorter distance to drink, and their nesting success was enhanced by 20% compared to the control. This shows that water availability and rainfall can have a strong effect on predator-prey dynamics and that changes in precipitation brought by climate change could have an impact on some Arctic species through a top-down effect.
- Published
- 2009
- Full Text
- View/download PDF
15. Predator behaviour and predation risk in the heterogeneous Arctic environment.
- Author
-
Lecomte N, Careau V, Gauthier G, and Giroux JF
- Subjects
- Animals, Anseriformes physiology, Arctic Regions, Eggs, Female, Nesting Behavior physiology, Population Density, Population Dynamics, Risk Factors, Time Factors, Wetlands, Arvicolinae physiology, Birds physiology, Ecosystem, Foxes physiology, Models, Biological, Predatory Behavior physiology
- Abstract
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.
- Published
- 2008
- Full Text
- View/download PDF
16. Breeding dispersal in a heterogeneous landscape: the influence of habitat and nesting success in greater snow geese.
- Author
-
Lecomte N, Gauthier G, and Giroux JF
- Subjects
- Animals, Climate, Female, Male, Movement, Northwest Territories, Breeding, Ecosystem, Geese physiology, Nesting Behavior physiology
- Abstract
Despite numerous studies on breeding dispersal, it is still unclear how habitat heterogeneity and previous nesting success interact to determine nest-site fidelity at various spatial scales. In this context, we investigated factors affecting breeding dispersal in greater snow geese (Anser caerulescens atlanticus), an Arctic breeding species nesting in two contrasting habitats (wetlands and mesic tundra) with variable pattern of snowmelt at the time of settlement in spring. From 1994 to 2005, we monitored the nesting success and breeding dispersal of individually marked females. We found that snow geese showed a moderate amount of nest-site fidelity and considerable individual variability in dispersal distance over consecutive nesting attempts. This variability can be partly accounted for by the annual timing of snowmelt. Despite this environmental constraint, habitat differences at the colony level consistently affected nesting success and settlement patterns. Females nesting in wetlands had higher nesting success than those nesting in mesic tundra. Moreover, geese responded adaptively to spatial heterogeneity by showing fidelity to their nesting habitat, independently of snowmelt pattern. From year to year, geese were more likely to move from mesic to high-quality wetland habitat, regardless of previous nesting success and without cost on their subsequent nesting performance. The unpredictability of snowmelt and the low cost of changing site apparently favour breeding-site dispersal although habitat quality promotes fidelity at the scale of habitat patches.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.