7 results on '"Buée M"'
Search Results
2. 454 Pyrosequencing Analyses of Forest Soils Reveal an Unexpectedly High Fungal Diversity
- Author
-
Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., and Martin, F.
- Published
- 2009
- Full Text
- View/download PDF
3. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome
- Author
-
Pérez-Izquierdo, Leticia, Zabal-Aguirre, M., González-Martínez, Santiago C., Buée, M, Verdú, Miguel, Rincón, A., Rincón, Ana, Goberna, M., Instituto de Ciencias Agrarias-CSIC (ICA-CSIC), Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Interactions Arbres-Microorganismes (IAM), Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA), Université de Valence, Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas, Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Centro de Investigaciones sobre Desertificacion (CIDE), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Ministerio de Economía y Competitividad (España), Pérez-Izquierdo, Leticia [0000-0002-5200-8157], Verdú, Miguel [0000-0002-9778-7692], Pérez-Izquierdo, Leticia, and Verdú, Miguel
- Subjects
0106 biological sciences ,bactérie rhizosphérique ,variabilité génétique ,microbiome ,Plant Science ,maritime pine ,01 natural sciences ,Decomposer ,Phylogenetic community structure ,genetic variability ,2. Zero hunger ,Rhizosphere ,arbre ,pinus pinaster ,Ecology ,Phylogenetic tree ,soil bacteria ,Soil bacteria ,nutrient cycling ,phylogenetic community structure ,biogeochemical cycle ,ecosystem functioning ,plant genotype ,rhizosphère ,ectomycorrhizal fungi ,Biology ,Nutrient cycling ,010603 evolutionary biology ,Intraspecific competition ,Plant genotype ,rhizospheric bacteria ,Ecosystem ,Microbiome ,activité microbiologique du sol ,Ectomycorrhizal fungi ,Ecology, Evolution, Behavior and Systematics ,Root microbiome ,champignon ectomycorhizien ,15. Life on land ,variation intraspécifique ,Microbial population biology ,Ecosystem functioning ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,proteobacteria ,010606 plant biology & botany ,cycle biogéochimique ,basidiomycete - Abstract
Plant genetic variation, through its phenotypic display, can determine the composition of below ground microbial communities. Variation within a species is increasingly acknowledged to have substantial ecological consequences, particularly through trophic cascades. We hypothesized that the intraspecific genotypic variation of the tree host might impact the phylogenetic composition of its rhizospheric microbial communities, by favouring particular clades, that might be further reflected in ecosystem process rates. We tested whether the intraspecific genotypic variation of Pinus pinaster modulates nutrient cycling by determining the phylogenetic structure of its symbiotic ectomycorrhizal fungi and rhizospheric bacteria. We sequenced fungal and bacterial molecular markers and reconstructed phylogenies in the rhizosphere of P. pinaster trees belonging to three genotypic variants (Mediterranean, Atlantic, African) in three 45-year-old common garden experiments, and measured seven soil enzymatic activities. Local effects, based on differences in elevation and soil conditions across sites, were strong predictors of the ectomycorrhizal and bacterial communities thriving in tree’s rhizosphere. Across-site variation also explained differences in phosphorus cycling. We detected, however, a significant effect of the plant genotype on the phylogenetic structure of the root-associated microbiota that was consistent across sites. The most productive Mediterranean plant genotype sheltered the most distinct root microbiome, with the dominant Basidiomycetes and Proteobacteria having a strong influence on the phylogenetic microbial community structure and associating with an enhanced hydrolysis of celluloses, hemicelluloses and chitin. Beneath the less productive Atlantic genotype, the less abundant Ascomycetes and up to thirteen bacterial phyla shaped the phylogenetic microbial structure, and predicted the rates of peptidase. Ectomycorrhizal fungi explained the activity of cellulases and protease, and bacteria that of hemicellulases and chitinase, suggesting functional complementarity. Synthesis. This is the first report using three-replicated long-term common gardens in mature forests to disentangle plant genotype- and site-specific drivers of the rhizospheric microbiome and its enzymatic potential. We concluded that intraspecific variation in primary producers leaves a phylogenetic signature in mutualists and decomposers that further modulate key steps in carbon and nitrogen cycles. These results emphasize the ecological relevance of plant intraspecific diversity in determining essential plant–soil feedbacks that control ecosystem productivity and performance., This work was supported by the projects MyFUNCO (CGL2011‐29585‐C02‐02), and Microfac (CGL2014‐58333‐P) funded by the Spanish Ministry for Economy and Competitiveness (MINECO), as well as by the LABoratoire d'EXcellence Arbre (LABEX Arbre, INRA‐Nancy). L.P.‐I. held a pre‐doctoral fellowship and M.G. a Ramón y Cajal contract, both awarded by the Spanish Ministry of Economy and Competitiveness‐MINECO.
- Published
- 2019
4. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups.
- Author
-
HORTAL, S., TROCHA, L. K., MURAT, C., CHYBICKI, I. J., BUÉE, M., TROJANKIEWICZ, M., BURCZYK, J., and MARTIN, F.
- Subjects
BEECH ,PLANT roots ,ECTOMYCORRHIZAL fungi ,GENETIC vectors ,COMPLEMENTATION (Genetics) ,ECOPHYSIOLOGY - Abstract
In this study, we characterize and compare the genetic structure of aboveground and belowground populations of the ectomycorrhizal fungus Laccaria amethystina in an unmanaged mixed beech forest. Fruiting bodies and mycorrhizas of L. amethystina were mapped and collected in four plots in the Świętokrzyskie Mountains (Poland). A total of 563 fruiting bodies and 394 mycorrhizas were successfully genotyped using the rDNA IGS1 (intergenic spacer) and seven simple sequence repeat markers. We identified two different genetic clusters of L. amethystina in all of the plots, suggesting that a process of sympatric isolation may be occurring at a local scale. The proportion of individuals belonging to each cluster was similar among plots aboveground while it significantly differed belowground. Predominance of a given cluster could be explained by distinct host preferences or by priority effects and competition among genets. Both aboveground and belowground populations consisted of many intermingling small genets. Consequently, host trees were simultaneously colonized by many L. amethystina genets that may show different ecophysiological abilities. Our data showed that several genets may last for at least 1 year belowground and sustain into the next season. Ectomycorrhizal species reproducing by means of spores can form highly diverse and persistent belowground genets that may provide the host tree with higher resilience in a changing environment and enhance ecosystem performance. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
5. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor.
- Author
-
Courty, P. E., Hoegger, P. J., Kilaru, S., Kohler, A., Buée, M., Garbaye, J., Martin, F., and Kües, U.
- Subjects
ECTOMYCORRHIZAL fungi ,LACCASE ,EFFECT of copper on plants ,MICROBIAL genomics ,BASIDIOMYCETES ,PLANT phylogeny ,COPRINACEAE ,GENE expression - Abstract
• In forest soils, ectomycorrhizal and saprotrophic Agaricales differ in their strategies for carbon acquisition, but share common gene families encoding multi-copper oxidases (MCOs). These enzymes are involved in the oxidation of a variety of soil organic compounds. • The MCO gene family of the ectomycorrhizal fungus Laccaria bicolor is composed of 11 genes divided into two distinct subfamilies corresponding to laccases ( lcc) sensu stricto ( lcc1 to lcc9), sharing a high sequence homology with the coprophilic Coprinopsis cinerea laccase genes, and to ferroxidases ( lcc10 and lcc11) that are not present in C. cinerea. The fet3-like ferroxidase genes lcc10 and lcc11 in L. bicolor are each arranged in a mirrored tandem orientation with an ftr gene coding for an iron permease. Unlike C. cinerea, L. bicolor has no sid1/ sidA gene for siderophore biosynthesis. • Transcript profiling using whole-genome expression arrays and quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) revealed that some transcripts were very abundant in ectomycorrhizas ( lcc3 and lcc8), in fruiting bodies ( lcc7) or in the free-living mycelium grown on agar medium ( lcc9 and lcc10), suggesting a specific function of these MCOs. • The amino acid composition of the MCO substrate binding sites suggests that L. bicolor MCOs interact with substrates different from those of saprotrophic fungi. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
6. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community
- Author
-
Buée, M., Courty, P.E., Mignot, D., and Garbaye, J.
- Subjects
- *
SPECIES diversity , *FUNGAL communities , *ECTOMYCORRHIZAL fungi , *BIODIVERSITY - Abstract
Abstract: The species of an ectomycorrhizal (ECM) community were investigated in a temperate oak forest by morphotyping and ITS rDNA sequencing. Thirty-six ECM morphotypes were found at the site. The niche effect (as organic soil, mineral soil or dead woody debris artificially introduced in the soil) on the ECM community structure and on the potential catabolic activities of the most abundant morphotypes was studied. The morphotypes in each niche were subjected to enzymatic tests developed for hydrolytic and oxidative enzymes involved in the decomposition of organic compounds. The ECM community structure varied widely depending on the soil horizon or habitat patch. The species richness was higher in the A1 horizon than in the other niches. Different ECM species had different activity patterns for the eight enzymatic tests while co-occurring in the same niche. Catabolic activities also changed within species between niches. Dead woody debris were extensively colonized by two saprotrophic fungi (Megacollybia platyphylla and Armillaria sp.) and, in this particular niche, ECM morphotypes predominantly belonged to the genera Lactarius and Tomentella. These morphotypes showed high chitinase activities. This study suggested also that some ECM fungi could obtain nutrients via the chitin degradation of dead or live saprobes. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
7. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis
- Author
-
Francis Martin, Annegret Kohler, Claude Murat, Raffaella Balestrini, Pedro M. Coutinho, Olivier Jaillon, Barbara Montanini, Emmanuelle Morin, Benjamin Noel, Riccardo Percudani, Bettina Porcel, Andrea Rubini, Antonella Amicucci, Joelle Amselem, Véronique Anthouard, Sergio Arcioni, François Artiguenave, Jean-Marc Aury, Paola Ballario, Angelo Bolchi, Andrea Brenna, Annick Brun, Marc Buée, Brandi Cantarel, Gérard Chevalier, Arnaud Couloux, Corinne Da Silva, France Denoeud, Sébastien Duplessis, Stefano Ghignone, Benoît Hilselberger, Mirco Iotti, Benoît Marçais, Antonietta Mello, Michele Miranda, Giovanni Pacioni, Hadi Quesneville, Claudia Riccioni, Roberta Ruotolo, Richard Splivallo, Vilberto Stocchi, Emilie Tisserant, Arturo Roberto Viscomi, Alessandra Zambonelli, Elisa Zampieri, Bernard Henrissat, Marc-Henri Lebrun, Francesco Paolocci, Paola Bonfante, Simone Ottonello, Patrick Wincker, Interactions Arbres-Microorganismes (IAM), Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA), Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), UOS Torino, Architecture et fonction des Macromolécules Biologiques - UMR 6098 (AFMB), Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Dipartimento di Biochimica e Biologia Molecolare, Università degli studi di Parma [Parme, Italie], Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Consiglio Nazionale delle Ricerche [Milano] (CNR), Dipartimento di Scienze Biomolecolari Universita di Urbino (DISB), Università degli Studi di Urbino 'Carlo Bo', Institut National de la Recherche Agronomique (INRA), Génomique métabolique (UMR 8030), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), Dipartimento di Genetica e Biologia Molecolare, Università degli Studi di Roma 'La Sapienza' [Rome], Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Università degli Studi di Bologna, Dipartimento di Biologia Vegetale, Università degli studi di Torino (UNITO), Dipartimento di Biologia di Base ed Applicata, Aquila University, Università degli Studi dell'Aquila [L'Aquila] (UNIVAQ.IT), Unité de Recherche Génomique Info (URGI), CNR IGV, Consiglio Nazionale delle Ricerche (CNR), University of Goettingen, Consiglio Nazionale delle Ricerche [Torino] (CNR), Architecture et fonction des macromolécules biologiques (AFMB), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), BIOlogie et GEstion des Risques en agriculture (BIOGER), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Istituto di Scienze e Tecnologie Molecolari = Institute of Molecular Science and Technologies (ISTM-CNR [Perugia - Milano]), ANR-06-BLAN-0399,FungEffector,A genome-wide survey of secreted proteins as effectors of symbiosis and pathogenicity in plant-associated fungi(2006), European Project: 33958,EVOLTREE, Martin, Francis, Murat-Furminieux, Claude, Martin F., Kohler A., Murat C., Balestrini R., Coutinho P.M., Jaillon O., Montanini B., Morin E., Noel B., Percudani R., Porcel B., Rubini A., Amicucci A., Amselem J., Anthouard V., Arcioni S., Artiguenave F., Aury J.M., Ballario P., Bolchi A., Brenna A., Brun A., Buée M., Cantarel B., Chevalier G., Couloux A., Da Silva C., Denoeud F., Duplessis S., Ghignone S., Hilselberger B., Iotti M., Mello M., Miranda M., Pacioni G., Quesneville H., Riccioni C., Ruotolo R., Splivallo R., Stocchi V., Tisserant E., Viscomi A.R., Zambonelli A., Zampieri E., Henrissat B., Lebrun M.H., Paolocci F., Bonfante P., Ottonello S., Wincker P., Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), CNR Istituto per la Protezione Sostenibile delle Piante [Torino, Italia] (IPSP), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università degli studi di Parma = University of Parma (UNIPR), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Università degli studi di Torino = University of Turin (UNITO), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), Georg-August-University = Georg-August-Universität Göttingen, Centre National de la Recherche Scientifique (CNRS)-Université de Provence - Aix-Marseille 1, University of Parma = Università degli studi di Parma [Parme, Italie], Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Università degli Studi dell'Aquila (UNIVAQ), University of Göttingen - Georg-August-Universität Göttingen, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,Tuber melanosporum ,tuber ,ectomycorrhizal fungi ,TRUFFE NOIRE DU PERIGORD ,[SDV]Life Sciences [q-bio] ,Genes, Fungal ,Molecular Sequence Data ,TRUFFE BLANCHE DU PIEMONT ,Carbohydrates ,Genomics ,Haploidy ,01 natural sciences ,Genome ,Ectosymbiosis ,Evolution, Molecular ,03 medical and health sciences ,truffe ,Symbiosis ,Ascomycota ,Tuber aestivum ,champignon comestible ,Fruiting Bodies, Fungal ,030304 developmental biology ,2. Zero hunger ,Genetics ,0303 health sciences ,Multidisciplinary ,Truffle ,biology ,génome ,Fungal genetics ,Sequence Analysis, DNA ,biology.organism_classification ,DNA Transposable Elements ,fungal genoma ,Genome, Fungal ,europe ,symbiose ,Sulfur ,010606 plant biology & botany - Abstract
Letter; International audience; The Périgord black truffle ($Tuber\ melanosporum$ Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of $T.\ melanosporum$ is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal $Laccaria\ bicolor$, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of $T.\ melanosporum$, which at $\sim$125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for $\sim$58% of the genome. In contrast, this genome only contains $\sim$7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that $T.\ melanosporum$ degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both $L.\ bicolor$ and $T.\ melanosporum$, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis $-$'the symbiosis toolbox'$-$ evolved along different ways in ascomycetes and basidiomycetes
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.