7 results on '"Meinhardt S"'
Search Results
2. Topographical distribution of redox centres and the Qo site in ubiquinol-cytochrome-c oxidoreductase (complex III) and ligand structure of the Rieske iron-sulphur cluster.
- Author
-
Ohnishi T, Sled VD, Rudnitzky NI, Meinhardt SW, Yagi T, Hatefi Y, Link T, von Jagow G, Saribas AS, and Daldal F
- Subjects
- Histidine, Ligands, Models, Structural, Oxidation-Reduction, Rhodobacter capsulatus enzymology, Thermus thermophilus metabolism, Electron Transport Complex III chemistry, Electron Transport Complex III metabolism, Iron-Sulfur Proteins chemistry, Iron-Sulfur Proteins metabolism
- Published
- 1994
- Full Text
- View/download PDF
3. Determination of the position of the Qi.- quinone binding site from the protein surface of the cytochrome bc1 complex in Rhodobacter capsulates chromatophores.
- Author
-
Meinhardt SW and Ohnishi T
- Subjects
- Binding Sites, Electron Spin Resonance Spectroscopy, Holmium pharmacology, Rhodobacter capsulatus enzymology, Bacterial Chromatophores enzymology, Benzoquinones metabolism, Electron Transport Complex III metabolism, Rhodobacter capsulatus metabolism
- Abstract
The technique of distance measurement, utilizing spin relaxation enhancement by an external probe, has been extended to the study of intrinsic semiquinone radicals through the use of holmium-EDTA complexes and continuous wave electron paramagnetic resonance spectroscopy. This technique has been used to determine the distance of the semiquinone anion, Qi (also designated as Qn.- or Qc.-), from the surface of the ubiquinone cytochrome c oxidoreductase, consisting of only three subunits, in membrane particles from Rhodobacter capsulates. The location of the semiquinone anion is 6-10 A from the N side protein, establishing that there are two separate quinone reaction sites, i.e., 'Qi' and 'Qo', within this complex on opposite sides of the membrane. The results are discussed in relation to reported ENDOR, EPR, and optical studies of the mitochondrial counterpart.
- Published
- 1992
- Full Text
- View/download PDF
4. Effect of papain digestion on polypeptide subunits and electron-transfer pathways in mitochondrial b-c1 complex.
- Author
-
Lorusso M, Cocco T, Boffoli D, Gatti D, Meinhardt S, Ohnishi T, and Papa S
- Subjects
- Animals, Antimycin A analogs & derivatives, Antimycin A pharmacology, Cattle, Electron Spin Resonance Spectroscopy, Electron Transport, Electrophoresis, Polyacrylamide Gel, Hydrolysis, Iron-Sulfur Proteins analysis, Kinetics, Oxidation-Reduction, Protons, Spectrophotometry, Electron Transport Complex III analysis, Mitochondria, Heart enzymology, Papain, Peptide Fragments analysis, Peptides analysis
- Abstract
Papain digestion of subunits of mitochondrial b-c1 complex (ubiquinol-cytochrome-c reductase) isolated from bovine heart and its impact on redox and proton-motive activity of the whole complex were investigated. A 5-min incubation of the oxidized enzyme with papain resulted in digestion of core protein II and the 14-kDa subunit, and limited digestion of the iron-sulfur protein. This was accompanied by a small inhibition of the rate of electron flow and a marked inhibition of proton translocation with decrease of the H+/e- ratio for proton pumping. When papain treatment was performed on the b-c1 complex pre-reduced with ascorbate, partial proteolysis of the iron-sulfur protein and the 14-kDa subunit was greatly accelerated and the electron transfer activity was more markedly inhibited. In all the conditions tested, digestion of the Rieske iron-sulfur protein paralleled the inhibition of reductase activity. Under ascorbate-reduced conditions, papain digestion of the complex gave rise to an alteration of the EPR line shape of the iron-sulfur cluster, namely a broadening and shift of the gx negative peak and destabilization of the protein-bound antimycin-sensitive semiquinone. The latter paralleled the decrease in electron transfer activity and inhibition of antimycin-sensitive cytochrome-b reduction. The results obtained indicate the following. 1. Core protein II and the 14-kDa protein may contribute to the proton-conducting pathway(s) from the matrix aqueous phase to the primary protolytic redox center (protein-bound semiquinone/quinone couple). 2. The iron-sulfur protein contributes, together with other protein(s) (the 14-kDa subunit), to the stabilization of the protein-bound antimycin-sensitive semiquinone species in a protein pocket in the complex. 3. Reduction of the high-potential redox centers induces a change in the quaternary structure of the complex which results in an enhanced surface exposure of segments of the 14-kDa protein and the iron-sulfur protein.
- Published
- 1989
- Full Text
- View/download PDF
5. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans.
- Author
-
Meinhardt SW, Yang XH, Trumpower BL, and Ohnishi T
- Subjects
- Coenzymes, Electron Spin Resonance Spectroscopy, Kinetics, Macromolecular Substances, Oxidation-Reduction, Electron Transport Complex III metabolism, Iron-Sulfur Proteins metabolism, Metalloproteins metabolism, Paracoccus denitrificans enzymology, Ubiquinone analogs & derivatives, Ubiquinone metabolism
- Abstract
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.
- Published
- 1987
6. Spatial organization of redox active centers in the bovine heart ubiquinol-cytochrome c oxidoreductase.
- Author
-
Ohnishi T, Schägger H, Meinhardt SW, LoBrutto R, Link TA, and von Jagow G
- Subjects
- Animals, Binding Sites, Cattle, Cytochromes metabolism, Electron Spin Resonance Spectroscopy, Kinetics, Liposomes, Models, Structural, Oxidation-Reduction, Protein Conformation, Proteolipids metabolism, Electron Transport Complex III metabolism, Mitochondria, Heart enzymology
- Abstract
We have examined the spatial organization of the redox active centers in the Site II segment of the bovine heart respiratory chain by using reconstituted proteoliposomes of ubiquinol-cytochrome c oxidoreductase (Complex III or cytochrome bc1 complex) and EPR techniques. 1) Mutual spin-spin interactions between intrinsic redox active centers were detected. The spin relaxation of the Rieske iron-sulfur cluster was enhanced by the paramagnetic cytochrome c1 and b566 hemes but not by cytochrome b562. 2) Relative distances of the individual redox active centers to the P-side and N-side surfaces of the reconstituted Complex III proteoliposome were measured by our paramagnetic probe method (Blum, H., Bowyer, J. R., Cusanovich, M. A., Waring, A. J., and Ohnishi, T. (1983) Biochim. Biophys. Acta 748, 418-428). The cytochrome b562 heme was shown to be close to the middle of the phospholipid bilayer, while the Rieske iron-sulfur cluster and cytochrome b566 heme were assigned to be near the P-side surface level of the membrane. This probe method is a low resolution technique from the structural viewpoint; however, it can provide direct and reliable assignment of the topographical locations of redox active centers within the membrane. This is the first direct demonstration of the transmembranous location of the two cytochrome b hemes, although electron transfer between these two hemes crosses only half of the membrane thickness. Our data support the assignment of transmembranous distribution of the redox active centers based on electrochromic measurements (Robertson, D.E., and Dutton, P.L. (1988) Biochim, Biophys. Acta 935, 273-291). The implication of these results on the mechanism of Site II energy coupling is discussed.
- Published
- 1989
7. Structure and function of the mitochondrial bc1 complex. A mutational analysis of the yeast Rieske iron-sulfur protein.
- Author
-
Gatti DL, Meinhardt SW, Ohnishi T, and Tzagoloff A
- Subjects
- Amino Acid Sequence, Amino Acids, Electron Spin Resonance Spectroscopy, Macromolecular Substances, Models, Structural, Molecular Sequence Data, Mutation, Phenotype, Protein Conformation, Saccharomyces cerevisiae, Cytochrome Reductases, Electron Transport Complex III, Fungal Proteins, Iron-Sulfur Proteins, Metalloproteins, Mitochondria metabolism, NADH Dehydrogenase, Ubiquinone analogs & derivatives
- Abstract
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the loop that contains the ligands of the cluster.
- Published
- 1989
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.