1. Performance Characteristics of a Rule-Based Electronic Health Record Algorithm to Identify Patients with Gross and Microscopic Hematuria.
- Author
-
Kashkoush J, Gupta M, Meissner MA, Nielsen ME, Kirchner HL, and Garg T
- Subjects
- Humans, Microscopy, Urinalysis, Algorithms, Hematuria diagnosis, Electronic Health Records
- Abstract
Background: Two million patients per year are referred to urologists for hematuria, or blood in the urine. The American Urological Association recently adopted a risk-stratified hematuria evaluation guideline to limit multi-phase computed tomography to individuals at highest risk of occult malignancy., Objectives: To understand population-level hematuria evaluations, we developed an algorithm to accurately identify hematuria cases from electronic health records (EHRs)., Methods: We used International Classification of Diseases (ICD)-9/ICD-10 diagnosis codes, urine color, and urine microscopy values to identify hematuria cases and to differentiate between gross and microscopic hematuria. Using an iterative process, we refined the ICD-9 algorithm on a gold standard, chart-reviewed cohort of 3,094 hematuria cases, and the ICD-10 algorithm on a 300 patient cohort. We applied the algorithm to Geisinger patients ≥35 years ( n = 539,516) and determined performance by conducting chart review ( n = 500)., Results: After applying the hematuria algorithm, we identified 51,500 hematuria cases and 488,016 clean controls. Of the hematuria cases, 11,435 were categorized as gross, 26,658 as microscopic, 12,562 as indeterminate, and 845 were uncategorized. The positive predictive value (PPV) of identifying hematuria cases using the algorithm was 100% and the negative predictive value (NPV) was 99%. The gross hematuria algorithm had a PPV of 100% and NPV of 99%. The microscopic hematuria algorithm had lower PPV of 78% and NPV of 100%., Conclusion: We developed an algorithm utilizing diagnosis codes and urine laboratory values to accurately identify hematuria and categorize as gross or microscopic in EHRs. Applying the algorithm will help researchers to understand patterns of care for this common condition., Competing Interests: M.E.N. serves as a paid consultant to the American College of Physicians High Value Care Task Force and as a consultant and advisor to Grand Rounds for which he is paid via stock options. T.G. served as a paid consultant to WebMD and reports an immediate family member was an employee of DRPLZ and was a stockholder. All other authors report no conflict of interest., (Thieme. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF