1. Simulation study on the influence of initial density distribution of laser ionized plasma on the ion extraction characteristics.
- Author
-
Chen, Xing, Lu, Xiao-Yong, and Cai, Lu
- Subjects
- *
PLASMA density , *PLASMA sources , *ELECTRIC fields , *RESEARCH personnel , *ELECTRONS - Abstract
In isotope concentration technology, ion extraction current and ion extraction efficiency are the key factors to measure the efficiency of the isotope concentration. In order to increase the ion extraction current, researchers usually hope to produce a plasma source with large initial peak density and width; however, in reality, it is limited by the laser power, and the total number of ions in a plasma produced by laser ionization is almost certain. In this case, how to improve the ion extraction efficiency by choosing the appropriate initial density distribution of plasma has become a difficult problem. In this paper, the effects of the initial density distribution of plasma on the ion extraction characteristics are studied by using the electron equilibrium fluid model. The numerical results suggest that the ion extraction efficiency is independent of the initial density distribution of plasma while the total number of ions in the plasma, the distance between the electrodes, and the electric field intensity are kept constant. When the total number of ions and the electric field intensity are kept constant, the distance between the electrodes is shortened by one time, and the time of ion extraction is also shortened by nearly one time; thus, the plasma source with high initial peak density and small width can be chosen, and the aim of ion extraction can be achieved by shortening the distance between the electrodes. This research results provide an important reference for guiding the experimental parameters such as laser power distribution and the design of ion extraction device. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF