1. ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: Implications for vascular remodeling and blood brain barrier modulation.
- Author
-
Wu L, Islam MR, Lee J, Takase H, Guo S, Andrews AM, Buzhdygan TP, Mathew J, Li W, Arai K, Lo EH, Ramirez SH, and Lok J
- Subjects
- Animals, Biological Transport, Humans, Male, Mice, Transfection, Blood-Brain Barrier metabolism, Endothelial Cells metabolism, Vascular Remodeling physiology
- Abstract
Neuregulin (NRG)1 - ErbB receptor signaling has been shown to play an important role in the biological function of peripheral microvascular endothelial cells. However, little is known about how NRG1/ErbB signaling impacts brain endothelial function and blood-brain barrier (BBB) properties. NRG1/ErbB pathways are affected by brain injury; when brain trauma was induced in mice in a controlled cortical impact model, endothelial ErbB3 gene expression was reduced to a greater extent than that of other NRG1 receptors. This finding suggests that ErbB3-mediated processes may be significantly compromised after injury, and that an understanding of ErbB3 function would be important in the of study of endothelial biology in the healthy and injured brain. Towards this goal, cultured brain microvascular endothelial cells were transfected with siRNA to ErbB3, resulting in alterations in F-actin organization and microtubule assembly, cell morphology, migration and angiogenic processes. Importantly, a significant increase in barrier permeability was observed when ErbB3 was downregulated, suggesting ErbB3 involvement in BBB regulation. Overall, these results indicate that neuregulin-1/ErbB3 signaling is intricately connected with the cytoskeletal processes of the brain endothelium and contributes to morphological and angiogenic changes as well as to BBB integrity.
- Published
- 2021
- Full Text
- View/download PDF