1. Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries.
- Author
-
Li, Junxian, Shu, Wenli, Zhang, Guangwan, Meng, Jiashen, Han, Chunhua, Wei, Xiujuan, and Wang, Xuanpeng
- Subjects
JAHN-Teller effect ,CATHODES ,PHASE transitions ,DIFFUSION kinetics ,TRANSITION metal oxides ,ENERGY density - Abstract
Manganese-based layered oxides are promising cathode materials for potassium-ion batteries (PIBs) due to their low cost and high theoretical energy density. However, the Jahn-Teller effect of Mn
3+ and sluggish diffusion kinetics lead to rapid electrode deterioration and a poor rate performance, greatly limiting their practical application. Here, we report a Co/Al co-substitution strategy to construct a P3-type K0.45 Mn0.7 Co0.2 Al0.1 O2 cathode material, where Co3+ and Al3+ ions occupy Mn3+ sites. This effectively suppresses the Jahn-Teller distortion and alleviates the severe phase transition during K+ intercalation/de-intercalation processes. In addition, the Co element contributes to K+ diffusion, while Al stabilizes the layer structure through strong Al-O bonds. As a result, the K0.45 Mn0.7 Co0.2 Al0.1 O2 cathode exhibits high capacities of 111 mAh g−1 and 81 mAh g−1 at 0.05 A g−1 and 1 A g−1 , respectively. It also demonstrates a capacity retention of 71.6% after 500 cycles at 1 A g−1 . Compared to the pristine K0.45 MnO2 , the K0.45 Mn0.7 Co0.2 Al0.1 O2 significantly alleviates severe phase transition, providing a more stable and effective pathway for K+ transport, as investigated by in situ X-ray diffraction. The synergistic effect of Co/Al co-substitution significantly enhances the structural stability and electrochemical performance, contributing to the development of new Mn-based cathode materials for PIBs. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF