1. Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: Formulation
- Author
-
Cervera Ruiz, Miguel, Chiumenti, Michèle, Codina, Ramon, Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria, and Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
- Subjects
Finite element method ,Engineering, Civil ,Mecànica dels sòlids ,Stabilization methods ,Orthogonal sub-grid scales ,Engineering, Multidisciplinary ,Mètode dels elements finits ,Enginyeria civil::Materials i estructures [Àrees temàtiques de la UPC] ,Mixed finite element interpolations ,Nonlinear solid mechanics ,Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC] ,Computer Science, Software Engineering ,Engineering, Marine ,Engineering, Manufacturing ,Engineering, Mechanical ,Engineering, Industrial ,Solid mechanics and its applications ,Engineering, Ocean ,Engineering, Aerospace ,Engineering, Biomedical - Abstract
This paper exploits the concept of stabilized finite element methods to formulate stable mixed stress/displacement and strain/displacement finite elements for the solution of nonlinear solid mechanics problems. The different assumptions and approximations used to derive the methods are exposed. The proposed procedure is very general, applicable to 2D and 3D problems and independent of the constitutive equation considered. Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible. Numerical examples show that the results obtained compare favourably with those obtained with the corresponding irreducible formulation.
- Published
- 2019