1. Using Coupled Hydrodynamic Biogeochemical Models to Predict the Effects of Tidal Turbine Arrays on Phytoplankton Dynamics
- Author
-
Pia Schuchert, Björn Elsäßer, Graham Savidge, Daniel W. Pritchard, and Louise Kregting
- Subjects
Biogeochemical cycle ,010504 meteorology & atmospheric sciences ,020209 energy ,irradiance ,Irradiance ,Ocean Engineering ,02 engineering and technology ,Structural basin ,Atmospheric sciences ,Natural variation ,Residence time (fluid dynamics) ,01 natural sciences ,hydrokinetic ,nutrients ,temperature ,environment ,transport ,lcsh:Oceanography ,lcsh:VM1-989 ,Phytoplankton ,0202 electrical engineering, electronic engineering, information engineering ,lcsh:GC1-1581 ,0105 earth and related environmental sciences ,Water Science and Technology ,Civil and Structural Engineering ,business.industry ,Dynamics (mechanics) ,lcsh:Naval architecture. Shipbuilding. Marine engineering ,MIKE 21 ,Oceanography ,Photosynthetically active radiation ,Environmental science ,business ,Tidal power - Abstract
The effects of large scale tidal energy device (TED) arrays on phytoplankton processes owing to the changes in hydrodynamic flows are unknown. Coupled two-dimensional biogeochemical and hydrodynamic models offer the opportunity to predict potential effects of large scale TED arrays on the local and regional phytoplankton dynamics in coastal and inshore environments. Using MIKE 21 Software by DHI (https://www.dhigroup.com), coupled two-dimensional biogeochemical and hydrodynamic models were developed with simulations including no turbines or an array of 55 turbines with four solar radiation scenarios to assess the temporal and spatial changes of phytoplankton dynamics in an idealised domain. Results suggest that the effect of TEDs on phytoplankton dynamics accounted for up to 25% of the variability in phytoplankton concentrations, most likely associated with an increased residence time in an inshore basin. However, natural variation, such as the intensity of photosynthetically active radiation, had a larger effect on phytoplankton dynamics than an array of TEDs.
- Published
- 2018
- Full Text
- View/download PDF