1. How Asian aerosols impact regional surface temperatures across the globe
- Author
-
Declan O'Donnell, Hannele Korhonen, Jouni Räisänen, Petri Räisänen, Kalle Nordling, Joonas Merikanto, Antti-Ilari Partanen, and Institute for Atmospheric and Earth System Research (INAR)
- Subjects
1171 Geosciences ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Physics ,QC1-999 ,Global warming ,Northern Hemisphere ,Longwave ,Flux ,010502 geochemistry & geophysics ,Atmospheric sciences ,114 Physical sciences ,01 natural sciences ,Aerosol ,Chemistry ,13. Climate action ,Environmental science ,Climate model ,Southern Hemisphere ,QD1-999 ,Air mass ,0105 earth and related environmental sciences - Abstract
South and East Asian anthropogenic aerosols mostly reside in an air mass extending from the Indian Ocean to the North Pacific. Yet the surface temperature effects of Asian aerosols spread across the whole globe. Here, we remove Asian anthropogenic aerosols from two independent climate models (ECHAM6.1 and NorESM1) using the same representation of aerosols via MACv2-SP (a simple plume implementation of the second version of the Max Planck Institute Aerosol Climatology). We then robustly decompose the global distribution of surface temperature responses into contributions from atmospheric energy flux changes. We find that the horizontal atmospheric energy transport strongly moderates the surface temperature response over the regions where Asian aerosols reside. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the temperature effects efficiently across the Northern Hemisphere and to a lesser extent also over the Southern Hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26±0.04 ∘C (0.22±0.03 for ECHAM6.1 and 0.30±0.03 ∘C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01±0.01 for ECHAM6.1 and 0.05±0.01 ∘C for NorESM1) and shortwave cloud (0.03±0.03 for ECHAM6.1 and 0.07±0.02 ∘C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the northern-hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and weakest during the Arctic summer. We estimate that under a strong Asian aerosol mitigation policy tied with strong climate mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years' worth of current-day global warming during the next few decades.
- Published
- 2021