Guoqing Sun, Jeffrey A. Hicke, Wenping Yuan, Xiaoyang Zhang, Jingfeng Xiao, Wenjian Ni, Li Zhang, Frédéric Chevallier, Kazuhito Ichii, Yong Pang, Luis Guanter, Abdullah F. Rahman, Cécile Gomez, Alfredo Huete, University of New Hampshire (UNH), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centro de Tecnologías Físicas [Universitat Politècnica de València], Universitat Politècnica de València (UPV), University of Idaho [Moscow, USA], School of Life Sciences, University of Technology Sydney (UTS), Chiba University, Chinese Academy of Sciences (CAS), Chinese Academy of Forestry, University of Texas Rio Grande Valley, Partenaires INRAE, Department of Geographical Sciences, University of Maryland [College Park], University of Maryland System-University of Maryland System, Sun Yat-Sen University [Guangzhou] (SYSU), South Dakota State University (SDSTATE), National Aeronautics and Space Administration (NASA) (Carbon Cycle Science Program) [NNX14AJ18G], National Aeronautics and Space Administration (NASA) (Climate Indicators and Data Products for Future National Climate Assessments) [NNX16AG61G], National Aeronautics and Space Administration (NASA) (Science of Terra and Aqua) [NNX14A170G], National Science Foundation (NSF) (MacroSystems Biology)National Science Foundation (NSF) [EF-1638688], Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
International audience; Quantifying ecosystem carbon fluxes and stocks is essential for better understanding the global carbon cycle and improving projections of the carbon-climate feedbacks. Remote sensing has played a vital role in this endeavor during the last five decades by quantifying carbon fluxes and stocks. The availability of satellite observations of the land surface since the 1970s, particularly the early 1980s, has made it feasible to quantify ecosystem carbon fluxes and stocks at regional to global scales. Here we provide a review of the advances in remote sensing of the terrestrial carbon cycle from the early 1970s to present. First, we present an overview of the terrestrial carbon cycle and remote sensing of carbon fluxes and stocks. Remote sensing data acquired in a broad wavelength range (visible, infrared, and microwave) of the electromagnetic spectrum have been used to estimate carbon fluxes and/or stocks. Second, we provide a historical overview of the key milestones in remote sensing of the terrestrial carbon cycle. Third, we review the platforms/sensors, methods, findings, and challenges in remote sensing of carbon fluxes. The remote sensing data and techniques used to quantify carbon fluxes include vegetation indices, light use efficiency models, terrestrial biosphere models, data-driven (or machine learning) approaches, solar-induced chlorophyll fluorescence (SIF), land surface temperature, and atmospheric inversions. Fourth, we review the platforms/sensors, methods, findings, and challenges in passive optical, microwave, and lidar remote sensing of biomass carbon stocks as well as remote sensing of soil organic carbon. Fifth, we review the progresses in remote sensing of disturbance impacts on the carbon cycle. Sixth, we also discuss the uncertainty and validation of the resulting carbon flux and stock estimates. Finally, we offer a forward-looking perspective and insights for future research and directions in remote sensing of the terrestrial carbon cycle. Remote sensing is anticipated to play an increasingly important role in carbon cycling studies in the future. This comprehensive and insightful review on 50?years of remote sensing of the terrestrial carbon cycle is timely and valuable and can benefit scientists in various research communities (e.g., carbon cycle, remote sensing, climate change, ecology) and inform ecosystem and carbon management, carbon-climate projections, and climate policymaking.