1. Multi-shell connectome DWI-based graph theory measures for the prediction of temporal lobe epilepsy and cognition.
- Author
-
Garcia-Ramos C, Adluru N, Chu DY, Nair V, Adluru A, Nencka A, Maganti R, Mathis J, Conant LL, Alexander AL, Prabhakaran V, Binder JR, Meyerand ME, Hermann B, and Struck AF
- Subjects
- Humans, Diffusion Magnetic Resonance Imaging, Cognition, Magnetic Resonance Imaging methods, Epilepsy, Temporal Lobe diagnostic imaging, Connectome methods
- Abstract
Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE., (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF