1. Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals.
- Author
-
Sahani M, Rout SK, and Dash PK
- Subjects
- Algorithms, Child, Electroencephalography, Humans, Neural Networks, Computer, Seizures diagnosis, Epilepsy diagnosis, Signal Processing, Computer-Assisted
- Abstract
In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN) are combined to recognize the epileptic seizure using both the multichannel scalp and single-channel electroencephalogram (EEG) signals. The novel RDCSAE structure is designed to extract the most discriminative unsupervised features from EEG signals and fed into the proposed supervised IKRVFLN classifier to train efficiently by reducing the mean-square error cost function for recognizing the epileptic seizure activity with promising accuracy. The proposed RDCSAE-IKRVFLN algorithm is tested over the benchmark Boston Children's Hospital multichannel scalp EEG (sEEG) and Boon University, Germany single-channel EEG databases. The less computational complexity, higher learning speed, better model generalization, accurate epileptic seizure recognition, remarkable classification accuracy, negligible false positive rate per hour (FPR/h) and short event recognition time are the main advantages of the proposed RDCSAE-IKRVFLN method over reduced deep convolutional neural network (RDCNN), RDCSAE and RDCSAE-KRVFLN methods. The proposed RDCSAE-IKRVFLN method is implemented in a high-speed reconfigurable field-programmable gate array (FPGA) hardware environment to design a computer-aided-diagnosis (CAD) system for automatic epileptic seizure diagnosis. The simplicity, feasibility, and practicability of the proposed method validate the stable and reliable performances of epilepsy detection and recognition.
- Published
- 2021
- Full Text
- View/download PDF