1. Learning induces EPO/EPOr expression in memory relevant brain areas, whereas exogenously applied EPO promotes remote memory consolidation.
- Author
-
Almaguer-Melian W, Mercerón-Martinez D, Alberti-Amador E, Alacán-Ricardo L, de Bardet JC, Orama-Rojo N, Vergara-Piña AE, Herrera-Estrada I, and Bergado JA
- Subjects
- Animals, Brain-Derived Neurotrophic Factor metabolism, Receptors, Erythropoietin metabolism, Brain metabolism, Hippocampus metabolism, Memory, Long-Term, Memory Consolidation, Erythropoietin pharmacology, Erythropoietin metabolism
- Abstract
Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex., (© 2024 Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF