1. Genotoxic Effect of Dicyclopropanated 5-Vinyl-2-Norbornene.
- Author
-
Novoyatlova US, Kessenikh AG, Kononchuk OV, Bazhenov SV, Fomkin AA, Kudryavtseva AA, Shorunov SV, Bermeshev MV, and Manukhov IV
- Subjects
- Gram-Negative Bacteria, Gram-Positive Bacteria, DNA Damage, Escherichia coli metabolism, Anti-Bacterial Agents pharmacology
- Abstract
Dicyclopropanated 5-vinyl-2-norbornene (dcpVNB) is a strained polycyclic hydrocarbon compound with a high energy content, which makes it promising for the development of propellant components based on it. In this work, the genotoxic properties of dcpVNB were studied using whole-cell lux -biosensors based on Escherichia coli and Bacillus subtilis . It was shown that the addition of dcpVNB to bacterial cells leads to the appearance of DNA damage inducing the SOS response and Dps expression with slight activation of the OxyR-mediated response to oxidative stress. The highest toxic effect of dcpVNB is detected by the following lux -biosensors: E. coli pColD-lux, E. coli pDps, B. subtilis pNK-DinC, and B. subtilis pNK-MrgA, in which the genes of bacterial luciferases are transcriptionally fused to the corresponding promoters: P
cda , Pdps , PdinC , and PmrgA . It was shown that lux -biosensors based on B. subtilis, and E. coli are almost equally sensitive to dcpVNB, which indicates the same permeability to this compound of cell wall of Gram-positive and Gram-negative bacteria. The activation of Pdps after dcpVNB addition maintains even in oxyR mutant E. coli strains, which means that the Pdps induction is only partially determined by the OxyR/S regulon. Comparison of specific stress effects caused by dcpVNB and 2-ethyl(bicyclo[2.2.1]heptane) (EBH), characterized by the absence of cyclopropanated groups, shows that structural changes in hydrocarbons could significantly change the mode of toxicity.- Published
- 2022
- Full Text
- View/download PDF