Mario Feingold, Diego A. Ramirez-Diaz, Daniela A. García-Soriano, Ana Raso, Jonas Mücksch, Petra Schwille, Germán Rivas, Federal Ministry of Education and Research (Germany), Max Planck Society, German-Israeli Foundation for Scientific Research and Development, Human Frontier Science Program, Ministerio de Economía y Competitividad (España), Israel Academy of Sciences and Humanities, Mücksch, Jonas [0000-0002-1469-6956], Feingold, Mario [0000-0001-9316-5856 ], Rivas, Germán [0000-0003-3450-7478], Schwille, Petra [0000-0002-6106-4847], Mücksch, Jonas, Feingold, Mario, Rivas, Germán, and Schwille, Petra
20 p.-6 fig., FtsZ, the primary protein of the bacterial Z ring guiding cell division, has been recently shown to engage in intriguing treadmilling dynamics along the circumference of the division plane. When coreconstituted in vitro with FtsA, one of its natural membrane anchors, on flat supported membranes, these proteins assemble into dynamic chiral vortices compatible with treadmilling of curved polar filaments. Replacing FtsA by a membrane-targeting sequence (mts) to FtsZ, we have discovered conditions for the formation of dynamic rings, showing that the phenomenon is intrinsic to FtsZ. Ring formation is only observed for a narrow range of protein concentrations at the bilayer, which is highly modulated by free Mg2+ and depends upon guanosine triphosphate (GTP) hydrolysis. Interestingly, the direction of rotation can be reversed by switching the mts from the C-terminus to the N-terminus of the protein, implying that the filament attachment must have a perpendicular component to both curvature and polarity. Remarkably, this chirality switch concurs with previously shown inward or outward membrane deformations by the respective FtsZ mutants. Our results lead us to suggest an intrinsic helicity of FtsZ filaments with more than one direction of curvature, supporting earlier hypotheses and experimental evidence., BMBF/MPG (grant number 031A359A MaxSynBio). The MaxSynBio consortium is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. German-Israeli Foundation (GIF) (grant number 1160-137.14/2011). to MF and PS. AR is funded through the GIF for Scientific Research and Development. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Graduate School of Quantitative Biosciences of the Ludwig Maximilians University. DR-D and DG-S are supported by a DFG fellowship through QBM. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. JM is supported by the Nanosystems Initiative Munich (NIM) excellence cluster and the International Max Planck Research School for Molecular Life Sciences (IMPRS). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Human Frontiers Science Program (grant number RGP0050/2010). to GR and PS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Spanish Government (grant number BFU2016-75471-C2-1-P). to GR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Israel Academy of Science and Humanities (grant number 1701/13). to MF.