1. Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks.
- Author
-
Zhang, Jichuan, Feng, Yongan, Staples, Richard J., Zhang, Jiaheng, and Shreeve, Jean'ne M.
- Subjects
IONIC bonds ,PROPELLANTS ,THERMAL stability ,HYDROGEN bonding ,EXPLOSIVES - Abstract
Owing to its simple preparation and high oxygen content, nitroformate [
− C(NO2 )3 , NF] is an extremely attractive oxidant component for propellants and explosives. However, the poor thermostability of NF-based derivatives has been an unconquerable barrier for more than 150 years, thus hindering its application. In this study, the first example of a nitrogen-rich hydrogen-bonded organic framework (HOF-NF) is designed and constructed through self-assembly in energetic materials, in which NF anions are trapped in pores of the resulting framework via the dual force of ionic and hydrogen bonds from the strengthened framework. These factors lead to the decomposition temperature of the resulting HOF-NF moiety being 200 °C, which exceeds the challenge of thermal stability over 180 °C for the first time among NF-based compounds. A large number of NF-based compounds with high stabilities and excellent properties can be designed and synthesized on the basis of this work. Nitroformate is an attractive oxidant compound in propellants and explosives but its poor thermostability prevents it from application. Here, the authors demonstrate that incorporation of nitroformate in a hydrogen-bonded organic framework increases the thermostability of nitroformate. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF