1. Structural Variant Disrupting the Expression of the Remote FOXC1 Gene in a Patient with Syndromic Complex Microphthalmia.
- Author
-
Plaisancié J, Chesneau B, Fares-Taie L, Rozet JM, Pechmeja J, Noero J, Gaston V, Bailleul-Forestier I, Calvas P, and Chassaing N
- Subjects
- Humans, Transcription Factors genetics, Anterior Eye Segment abnormalities, Alleles, Forkhead Transcription Factors genetics, Mutation, Microphthalmos genetics, Eye Abnormalities genetics
- Abstract
Ocular malformations (OMs) arise from early defects during embryonic eye development. Despite the identification of over 100 genes linked to this heterogeneous group of disorders, the genetic cause remains unknown for half of the individuals following Whole-Exome Sequencing. Diagnosis procedures are further hampered by the difficulty of studying samples from clinically relevant tissue, which is one of the main obstacles in OMs. Whole-Genome Sequencing (WGS) to screen for non-coding regions and structural variants may unveil new diagnoses for OM individuals. In this study, we report a patient exhibiting a syndromic OM with a de novo 3.15 Mb inversion in the 6p25 region identified by WGS. This balanced structural variant was located 100 kb away from the FOXC1 gene, previously associated with ocular defects in the literature. We hypothesized that the inversion disrupts the topologically associating domain of FOXC1 and impairs the expression of the gene. Using a new type of samples to study transcripts, we were able to show that the patient presented monoallelic expression of FOXC1 in conjunctival cells, consistent with the abolition of the expression of the inverted allele. This report underscores the importance of investigating structural variants, even in non-coding regions, in individuals affected by ocular malformations.
- Published
- 2024
- Full Text
- View/download PDF