The closely related crickets Dianemobius nigrofasciatus and Allonemobius allardi exhibit similar circadian rhythms and photoperiodic responses, suggesting that they possess similar circadian and seasonal clocks. To verify this assumption, antisera to Period (PER), Doubletime (DBT), and Cryptochrome (CRY) were used to visualize circadian clock neurons in the cephalic ganglia. Immunoreactivities referred to as PER-ir, DBT-ir, and CRY-ir were distributed mainly in the optic lobes (OL), pars intercerebralis (PI), dorsolateral protocerebrum, and the subesophageal ganglion (SOG). A system of immunoreactive cells in the OL dominates in D. nigrofasciatus, while immunoreactivities in the PI and SOG prevail in A. allardi. Each OL of D. nigrofasciatus contains 3 groups of cells that coexpress PER-ir and DBT-ir and send processes over the frontal medulla face to the inner lamina surface, suggesting functional linkage to the compound eye. Only 2 pairs of PER-ir cells (no DBT-ir) were found in the OL of A. allardi. Several groups of PER-ir cells occur in the brain of both species. The PI also contains DBT-ir and CRY-ir cells, but in A. allardi, most of the DBT-ir is confined to the SOG. Most immunoreactive cells in the PI and in the dorsolateral brain send their fibers to the contralateral corpora cardiaca and corpora allata. The proximity and, in some cases, proven identity of the PER-ir, DBT-ir, and CRY-ir perikarya are consistent with presumed interactions between the examined clock components. The antigens were always found in the cytoplasm, and no diurnal oscillations in their amounts were detected. The photoperiod, which controls embryonic diapause, the rate of larval development, and the wing length of crickets, had no discernible effect on either distribution or the intensity of the immunostaining.