1. RNase R Affects the Level of Fatty Acid Biosynthesis Transcripts Leading to Changes in membrane Fluidity.
- Author
-
Alípio AF, Bárria C, Pobre V, Matos AR, Prata SC, Amblar M, Arraiano CM, and Domingues S
- Subjects
- Gene Expression Regulation, Bacterial, Endoribonucleases metabolism, Endoribonucleases genetics, Bacterial Proteins metabolism, Bacterial Proteins genetics, Lipid Peroxidation, Membrane Fluidity, Streptococcus pneumoniae genetics, Streptococcus pneumoniae metabolism, Fatty Acids metabolism, Fatty Acids biosynthesis, Cell Membrane metabolism
- Abstract
Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition. Our results show that the membrane of the deleted strain contains higher proportion of unsaturated and long-chained fatty acids than the membrane of the wild type strain. These alterations render the RNase R mutant more prone to membrane lipid peroxidation and are likely the reason for the increased sensitivity of this strain to detergent lysis and to the action of the bacteriocin nisin. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The data presented here is suggestive of a role for RNase R in the composition of S. pneumoniae membrane, with strong impact on pneumococci adaptation to different stress situations., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF