4 results on '"Afshar, Saeed"'
Search Results
2. Event-Based Processing of Single Photon Avalanche Diode Sensors.
- Author
-
Afshar, Saeed, Hamilton, Tara Julia, Davis, Langdon, Van Schaik, Andre, and Delic, Dennis
- Abstract
Single Photon Avalanche Diode sensor arrays operating in direct time of flight mode can perform 3D imaging using pulsed lasers. Operating at high frame rates, SPAD imagers typically generate large volumes of noisy and largely redundant spatio-temporal data. This results in communication bottlenecks and unnecessary data processing. In this work, we propose a neuromorphic processing solution to this problem. By processing the spatio-temporal patterns generated by the SPADs in a local, event-based manner, the proposed $128\times 128$ pixel sensor-processor system reduces the size of output data from the sensor by orders of magnitude while increasing the utility of the output data in the context of challenging recognition tasks. To test the proposed system, the first large scale complex SPAD imaging dataset is captured using an existing $32\times 32$ pixel sensor. The generated dataset consists of 24000 recordings and involves high-speed view-invariant recognition of airplanes with background clutter. The frame-based SPAD imaging dataset is converted via several alternative methods into event-based data streams and processed using the proposed $125\times 125$ receptive field neuromorphic processor as well as a range of feature extractor networks and pooling methods. The output of the proposed event generation methods are then processed by an event-based feature extraction and classification system implemented in FPGA hardware. The event-based processing methods are compared to processing the original frame-based dataset via frame-based but otherwise identical architectures. The results show the event-based methods are superior to the frame-based approach both in terms of classification accuracy and output data-rate. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition.
- Author
-
Afshar, Saeed, Hamilton, Tara Julia, Tapson, Jonathan, van Schaik, André, and Cohen, Gregory
- Subjects
FEATURE extraction ,OBJECT recognition (Computer vision) ,SPATIOTEMPORAL processes ,RECEPTIVE fields (Neurology) ,NEURONS - Abstract
In this work, we investigate event-based feature extraction through a rigorous framework of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity (STDP) on a range of spatio-temporal kernels with different surface decaying methods, decay functions, receptive field sizes, feature numbers, and back end classifiers. This detailed investigation can provide helpful insights and rules of thumb for performance vs. complexity trade-offs in more generalized networks, especially in the context of hardware implementation, where design choices can incur significant resource costs. The investigation is performed using a new dataset consisting of model airplanes being dropped free-hand close to the sensor. The target objects exhibit a wide range of relative orientations and velocities. This range of target velocities, analyzed in multiple configurations, allows a rigorous comparison of time-based decaying surfaces (time surfaces) vs. event index-based decaying surface (index surfaces), which are used to perform unsupervised feature extraction, followed by target detection and recognition. We examine each processing stage by comparison to the use of raw events, as well as a range of alternative layer structures, and the use of random features. By comparing results from a linear classifier and an ELM classifier, we evaluate how each element of the system affects accuracy. To generate time and index surfaces, the most commonly used kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are investigated. Index surfaces were found to outperform time surfaces in recognition when invariance to target velocity was made a requirement. In the investigation of network structure, larger networks of neurons with large receptive field sizes were found to perform best. We find that a small number of event-based feature extractors can project the complex spatio-temporal event patterns of the dataset to an almost linearly separable representation in feature space, with best performing linear classifier achieving 98.75% recognition accuracy, using only 25 feature extracting neurons. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. Event-Based Feature Extraction Using Adaptive Selection Thresholds.
- Author
-
Afshar, Saeed, Ralph, Nicholas, Xu, Ying, Tapson, Jonathan, Schaik, André van, and Cohen, Gregory
- Subjects
- *
HEURISTIC , *FEATURE extraction , *MACHINE learning , *MATHEMATICAL optimization , *ONLINE education , *INSTRUCTIONAL systems - Abstract
Unsupervised feature extraction algorithms form one of the most important building blocks in machine learning systems. These algorithms are often adapted to the event-based domain to perform online learning in neuromorphic hardware. However, not designed for the purpose, such algorithms typically require significant simplification during implementation to meet hardware constraints, creating trade offs with performance. Furthermore, conventional feature extraction algorithms are not designed to generate useful intermediary signals which are valuable only in the context of neuromorphic hardware limitations. In this work a novel event-based feature extraction method is proposed that focuses on these issues. The algorithm operates via simple adaptive selection thresholds which allow a simpler implementation of network homeostasis than previous works by trading off a small amount of information loss in the form of missed events that fall outside the selection thresholds. The behavior of the selection thresholds and the output of the network as a whole are shown to provide uniquely useful signals indicating network weight convergence without the need to access network weights. A novel heuristic method for network size selection is proposed which makes use of noise events and their feature representations. The use of selection thresholds is shown to produce network activation patterns that predict classification accuracy allowing rapid evaluation and optimization of system parameters without the need to run back-end classifiers. The feature extraction method is tested on both the N-MNIST (Neuromorphic-MNIST) benchmarking dataset and a dataset of airplanes passing through the field of view. Multiple configurations with different classifiers are tested with the results quantifying the resultant performance gains at each processing stage. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.